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SUMMARY
The simultaneousmeasurement ofmultiplemodalities represents an exciting frontier for single-cell genomics
and necessitates computational methods that can define cellular states based on multimodal data. Here, we
introduce ‘‘weighted-nearest neighbor’’ analysis, an unsupervised framework to learn the relative utility of
each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure
to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending
to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal
analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously
unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly
map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019
(COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal data-
sets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity.
INTRODUCTION

The potential to catalog and characterize the rich diversity of cell

types in the human immune system represents a powerful op-

portunity for single-cell genomics (Chen et al., 2019a; Gomes

et al., 2019; Jaitin et al., 2014; Papalexi and Satija, 2018; Stub-

bington et al., 2017), yet also reveals the limitations of current ap-

proaches. Although established technologies like single-cell

RNA-seq (scRNA-seq) are capable of discovering new cell types

and states in heterogeneous tissues, transcriptomics alone is

often incapable of separating molecularly similar, but function-

ally distinct, categories of immune cells. Despite tremendous

functional diversity, distinct populations of T cells such as

effector, regulatory, gd, and mucosal associated invariant T

(MAIT), often cannot be effectively separated by scRNA-seq

alone, even when using the most sensitive and cutting-edge

technologies (Ding et al., 2020; Mereu et al., 2020). This reflects

technical challenges driven by theminimal RNA content of T cells

coupled with high RNase expression (Andreeff et al., 1978; Lu
Cell 184, 3573–3587, J
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et al., 2018; Sercan Alp et al., 2015), which hampers scRNA-

seq data quality. More broadly, this exhibits the challenge of

defining cell states based on the transcriptome alone, because

important sources of cellular heterogeneity may not correlate

strongly with transcriptomic features despite being identifiable

in other modalities.

Multimodal single-cell technologies, which simultaneously

profile multiple data types in the same cell, represent a new fron-

tier for the discovery and characterization of cell states. For

example, we recently introduced CITE-seq (Stoeckius et al.,

2017), which leverages oligonucleotide-conjugated antibodies

to simultaneously quantify RNA and surface protein abundance

in single cells via the sequencing of antibody-derived tags

(ADTs). Moreover, pioneering technological advancements

now enable the simultaneous profiling of transcriptome along-

side either chromatin accessibility (Cao et al., 2018; Chen

et al., 2019b), DNA methylation (Gaiti et al., 2019; Luo et al.,

2019), nucleosome occupancy (Clark et al., 2018; Pott, 2017),

or spatial location (Rodriques et al., 2019; Vickovic et al.,
une 24, 2021 ª 2021 The Authors. Published by Elsevier Inc. 3573
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2019). Each of these approaches offers an exciting solution to

overcome the inherent limitations of scRNA-seq and to explore

how multiple cellular modalities affect cellular state and function

(Zhu et al., 2020).

The maturation of multimodal single-cell technologies also ne-

cessitates the development of new computational methods to

integrate information across different data types (Efremova and

Teichmann, 2020). For example, although CITE-seq datasets

can be analyzed by first identifying clusters based on gene

expression values (Peterson et al., 2017; Stoeckius et al., 2017)

and subsequently exploring their immunophenotypes, a multi-

modal computational workflow would define cell states based

on both modalities. Importantly, these strategies must be robust

to potentially large differences in the data quality and information

content for each modality. In some contexts, robust protein

quantifications may be most valuable for clustering, especially

with a large and well-designed antibody panel. In other contexts

(particularly when important cell type markers are missing or not

previously known), the unsupervised nature of a cell’s transcrip-

tome may be the most valuable. The varying information content

of each modality, even across cells in the same dataset, repre-

sents a pressing challenge for the analysis and integration of

multimodal datasets.

Here, we introduce ‘‘weighted-nearest neighbor’’ (WNN) anal-

ysis, an analytical framework to integrate multiple data types

measured within a cell and to obtain a joint definition of cellular

state. Our approach is based on an unsupervised strategy to

learn cell-specific modality ‘‘weights,’’ which reflect the informa-

tion content for each modality and determine its relative

importance in downstream analyses. We demonstrate that

WNN analysis substantially improves our ability to define cellular

states in multiple biological contexts and data types. We

leverage this method to generate a multimodal ‘‘atlas’’ based

on a CITE-seq dataset of 211,000 human peripheral blood

mononuclear cells (PBMCs), with large cell-surface protein

marker panels extending up to 228 antibodies. We utilize this da-

taset to identify and validate heterogeneous cell states in human

lymphocytes and explore how the human immune system re-

sponds to vaccination and severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection. Our approach, imple-

mented in an updated version 4 of our open source R toolkit

Seurat, represents a broadly applicable strategy for integrative

multimodal analysis of single-cell data.

RESULTS

Quantifying the relative utility of each modality in
each cell
We sought to design a robust analytical workflow for the integra-

tion of multiple measurements collected within the same cell. To

be applied to a range of biological contexts and data types, our

strategy must successfully address the following criteria. First,

the workflow must be robust to potentially vast differences in

data quality between the modalities. Second, integrative multi-

modal analysis should enable multiple downstream analytical

tasks, including visualization, clustering, and the identification

of cellular trajectories. Last, and most importantly, simultaneous

analysis of multiple modalities should improve on the ability to
3574 Cell 184, 3573–3587, June 24, 2021
discover and characterize cell states, compared to independent

analyses of each modality when performed separately.

These challenges highlight the importance of a flexible frame-

work to handle diverse datasets. As previously described for

CITE-seq (Mimitou et al., 2019; Stoeckius et al., 2017), the

increased copy number of protein molecules compared to

RNA molecules typically leads to more robust detection of pro-

tein features. The protein data in CITE-seq may therefore repre-

sent the most informative modality, particularly in cases where

the antibody panel comprehensively represents all cell subsets

with high specificity. Other panels may omit antibodies for key

or previously undiscovered markers, or contain antibodies with

low binding specificity, in which case the unsupervised nature

of scRNA-seq may be most informative. Even within the same

dataset, the relative utility of each modality to define cell states

may vary across individual cells.

We therefore designed an analytical solution to address these

goals, without requiring prior knowledge from the user regarding

the importance of each modality. We first introduce and demon-

strate our solution on our previously generated CITE-seq dataset

of 8,617 cord blood mononuclear cells, with a panel of 10 immu-

nophenotypic markers (Stoeckius et al., 2017). Independent un-

supervised analysis of the RNA and protein data revealed largely

consistent cell classifications (Figures 1A, 1B, and S1) but did

exhibit some differences. For example, CD8+ and CD4+ T cells

were partially blended together when analyzing the transcrip-

tome but separated clearly in the protein data. Contrastingly,

conventional dendritic cells (cDCs), along with a rare population

of erythroid progenitors and spiked-in murine 3T3 controls,

formed distinct clusters when analyzing RNA but were inter-

mixed with other cell types based on surface protein abundance.

With biological foresight, the cell-type-specific differences

across modalities could be predicted by the composition of

the CITE-seq panel, which contained anti-CD4 and anti-CD8 an-

tibodies but lacked any immunophenotypic markers to discrim-

inate cDCs.

For each cell, we began by independently calculating sets of

k = 20 nearest neighbors for each modality. We found that for

CD8+ T cells, the most similar RNA neighbors often reflected a

mix of CD8+ and CD4+ T cells (in the RNA KNN graph, there

are a total of 944 incorrect edges that connect CD8+ to CD4+

T cells). By contrast, protein neighbors were predominantly

correctly identified as CD8+ T cells (in the protein KNN graph,

12 CD8+/CD4+ edges were identified). This reflects the particular

utility of protein data when defining the state of these cells. Next,

we independently averaged the molecular profiles of protein

neighbors and RNA neighbors (i.e., predicted themolecular con-

tents of a cell from its neighbors), and compared the averages to

their original measured values. We found that for CD8+ T cells,

protein KNN-based predictions were more accurate compared

to RNA KNN-based predictions (Figures 1C and 1D), whereas

the converse was true for cDCs (Figure S1).

We then leveraged the relative accuracy of these predictions

to calculate RNA and protein modality ‘‘weights,’’ describing

their relative information content for each individual cell. We pro-

vide a detailed mathematical description for each component of

the WNN workflow in the STAR Methods, highlighting three key

steps: (1) obtaining within modality and cross-modality
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Figure 1. Schematic overview of multimodal integration using weighted nearest neighbor analysis

(A and B) Independent analysis of transcriptome (A) and protein (B) modalities from a CITE-seq dataset of cord bloodmononuclear cells. Blue dot marks the same

target cell in (A) and (B). Red dots denote the k = 20 nearest neighbors to the target cell based on the transcriptome (A) or protein (B) modalities.

(C) The RNA neighbors are averaged together to predict the molecular contents of the target cell, which can be compared to the actual measurements. Each dot

denotes an individual gene, and the axis scale of expression is based on default log-normalization in Seurat. Because the RNA neighbors represent a mixture of

different T cell subsets, there is substantial error between predicted and measured protein expression levels for CD4 and CD8.

(D) Same as in (C), but averaging protein neighbors. Because protein neighbors are all CD8 T cells, the predicted values are close to the actual measurements. We

can therefore infer that for this target cell, the protein data are most useful for defining cell state and assign it a higher protein modality weight. As described in

STAR Methods, we perform the prediction and comparison steps in low-dimensional space.

(E) We can integrate the modalities by constructing a weighted nearest neighbor (WNN) graph, based on a weighted average of protein and RNA similarities.

UMAP visualization and clustering of this graph.

(F) Median RNA and protein modality weights for all cell types in the dataset. Modality weights were calculated for each cell without knowledge of cell type labels.

See also Figure S1.
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predictions, (2) converting these to prediction affinities, based on

a cell-specific bandwidth kernel, and (3) calculating modality

weights using a softmax transformation. The RNA and protein

modality weights are non-negative, unique to each cell, and

sum to 1.

Our final step integrates themodalities to create aWNN graph.

For each cell, we calculate a new set of k-nearest cells based on

a metric that reflects the weighted average of normalized RNA

and protein similarities (STARMethods). TheWNN graph is a sin-

gle representation of a multimodal dataset, but should more

accurately reflect the richness of both data types. For example,

the WNN graph contained only 20 CD8+/CD4+ edges. Moreover,

many common analytical tasks for single-cell data—including t-

distributed stochastic neighbor embedding)/uniform manifold

approximation and projection (t-SNE/UMAP) visualization, clus-

tering, and trajectory inference—can accept a user-specified

neighbor graph as input. We therefore used our WNN graph to

derive an integrated UMAP and clustering of our CITE-seq

dataset (Figure 1E). In contrast to the separate analysis of either

modality, our joint integration clearly separated CD4+ and CD8+

T cells, retained the identity of cDCs, and also uncovered addi-

tional sources of subtle heterogeneity within natural killer (NK)

cells (Figure S1). We observed that cells classified as CD8+
T cells were assigned higher protein modality weights, whereas

DCs were assigned higher RNA modality weights, recapitulating

our biological expectations despite the fact that the calculation

of modality weights was unsupervised and unaware of cell-

type labels (Figure 1F).

WNN analysis is a robust and flexible approach for
multimodal analysis
We next further explored the performance of our WNN integra-

tion, assessed its robustness to fluctuations in data quality,

and performed benchmarking against other recently developed

methods. For these analyses, we used a more recently gener-

ated CITE-seq dataset of human bone marrow, representing

30,672 mononuclear cells with a panel of 25 antibodies. While

the samples contained cells across the full spectrum of hemato-

poietic differentiation, the antibody panel was designed to sepa-

rate groups of terminally differentiated cells.

Consistent with our previous example, WNN integration sub-

stantially increased our ability to resolve hematopoietic cell

states (Figures 2A and S2). Once cell states were annotated

through integrated multimodal clustering, we were able to

discover differentially expressed (DE) genes and proteins in

each group, further validating their biological identity and
Cell 184, 3573–3587, June 24, 2021 3575
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Figure 2. Benchmarking and robustness analysis for WNN integration

(A) Analysis of a CITE-seq dataset of human bone marrow mononuclear cells and 25 surface proteins. UMAP visualizations are computed using RNA, protein, or

WNN analysis. Cell annotations are derived from WNN analysis and reveal heterogeneity within T cells and progenitors that cannot be discovered by either

modality independently. Granular annotations, which more clearly indicate subpar performance when analyzing only one modality, are shown in Figure S2.

(B) Single-cell protein modality weights. Progenitor populations all receive low protein weights, whereas T cell populations receive high protein modality weights,

consistent with the composition of the antibody panel that was tailored for differentiated cell types.

(C) To test the robustness of WNN, we added increasing amounts of Gaussian noise to the protein data. Protein weights decrease to 0 in all cell types as noise

levels increase.

(D and E) Benchmarking WNN against totalVI andMOFA+. (D) The integrated latent space defined byWNNmost accurately reconstructs expression levels for 25

proteins. (E) WNN analysis exhibits improved runtimes compared to competing methods. Additional benchmarking analyses in Figure S2.

See also Figure S3.
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significance (Figure S2). However, although these cell types are

defined by both RNA and protein markers, the statistical power

in unsupervised analysis of either modality separately was insuf-

ficient to identify these populations, demonstrating the impor-

tance of joint analysis. Indeed, when examining the cell-specific

modality weights, we found that T cell groups—and in particular,

populations that were masked in scRNA-seq analyses—all

received higher protein modality weights (Figure 2B). We found

that unsupervised transcriptome-focused clustering was unable

to separate these cell states, even if we performed a focused re-

clustering using only T cells (Figure S2).

Conversely, each of the cell populations with the highest RNA

weights represented hematopoietic progenitor populations. As a
3576 Cell 184, 3573–3587, June 24, 2021
result, our multimodal analysis was able to identify diverse pop-

ulations of hematopoietic stem cells, lymphoid-primed multipo-

tent progenitors (LMPP), and progenitors of erythroid, platelet,

monocyte, B, and conventional/plasmacytoid DC lineages that

could be recovered in scRNA-seq data, even though these

groups lacked immunophenotypic markers in our CITE-seq

experiment.We confirmed that our results were robust to a range

of values for k (Figure S2), and the incorporation of protein infor-

mation in the WNN graph does not come at the expense of iden-

tifying transcriptomically congruent neighborhoods (Figure S2;

STAR Methods).

These results suggest that integrated WNN analysis can pro-

vide necessary flexibility and allow one data type to compensate
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for weaknesses in another. We confirmed this using a simulation

experiment, where we added increasing amounts of random

Gaussian noise to the ADT data, in order to mimic increases in

nonspecific binding (Figure 2C). We found that the increasing

ADT noise led to a decrease in protein weights for all cell types,

in a dose-dependent manner. Moreover, protein modality

weights were assigned to 0 after a sufficient amount of protein

noise was added, correctly instructing downstream analyses to

focus only on scRNA-seq data.

We next benchmarked WNN analysis against two recently

introduced methods for multimodal integration: multi-omics fac-

tor analysis v2 (MOFA+) (Argelaguet et al., 2020), which uses a

statistical framework based on factor analysis, and totalVI

(Gayoso et al., 2019), which combines deep neural networks

with a hierarchical Bayesian model. Both methods integrate

the modalities into a latent space, which we used to construct

an integrated k-NN graph and a 2D UMAP visualization. We

reasoned that we could quantify the performance of the different

methods by comparing the similarity of each cell’s molecular

state to its closest neighbors in the integrated latent space. We

found that for each of the 25 proteins (Figure 2D), as well as

the RNA transcriptome (Figure S2), WNN analysis exhibited su-

perior or equivalent performance to alternative approaches.

The difference in performance was particularly striking for

markers of regulatory (CD25) and effector (CD57) T cells. This

was consistent with UMAP visualization, in which WNN was

the only method where these populations were not intermixed

with other groups (Figure S2). WNN analysis also exhibited sig-

nificant improvements in speed, ranging up to 15-fold when

analyzing the full dataset (Figure 2E).

Although we primarily demonstrate our approach on CITE-seq

datasets, our strategy is applicable to diverse multimodal tech-

nologies. For example, recent developments have enabled the

simultaneous measurement of ATAC-seq profiles and transcrip-

tomes from single nuclei (Cao et al., 2018; Chen et al., 2019b).

We applied WNN analysis to a dataset of 11,351 paired PBMC

profiles generated by the 10x Genomics Multiome ATAC+RNA

kit. We found that the combination of modalities exhibited

maximal power to separate immune subsets (Figure S3). Inter-

estingly, similar to our CITE-seq analyses, we found that

ATAC-seq data were more capable of separating naive CD8+

and CD4+ T cell states due to reliable detection of cell-type-spe-

cific open chromatin regions (Figure S3). The separation of these

clusters upon UMAP visualization (Figure S3) was consistent

with the number of incorrect naive CD8+/CD4+ edges identified

in each representation (RNA KNN: 984, ATAC KNN: 373,

WNN: 322).

The combination of ATAC and RNA data also allowed us to

identify differentially accessible DNA sequence motifs between

our WNN-defined clusters. For example, we found that ATAC-

seq peaks accessible in MAIT cells were highly enriched for mo-

tifs for the pro-inflammatory transcription factor RORgt (Ivanov

et al., 2006; Willing et al., 2018), which was also upregulated

transcriptionally in these cells (Figure S3). We obtained highly

concordant results when applying WNN analysis to ASAP-seq

(Mimitou et al., 2020), a third multimodal technology, that pairs

measurements of surface protein abundance with ATAC-seq

profiles in single cells (Figure S3).
Last, we considered a recent dataset of 34,774 mouse skin

cells generated by SHARE-seq (Ma et al., 2020), which gener-

ates paired measurements of chromatin accessibility and gene

expression. WNN analysis recapitulated each of the 23 popula-

tions described in the original manuscript where unsupervised

clustering was performed on transcriptomic measurements,

including three subgroups of Basal cells that could be distin-

guished from scRNA-seq. However, in addition to the published

findings, WNN analysis identified a novel population of Basal

cells that exhibits distinct chromatin accessibility profiles, but

does not exhibit unique transcriptomic characteristics (Fig-

ure S3). As basal cells in the skin are continually replenished

(Epstein, 2008), cells that exhibit a primed chromatin state pre-

ceding transcriptomic shifts may differ in their proliferative and

regenerative potential. We found that the Basal_4 population

was specifically characterized by increased chromatin accessi-

bility at CTCF and p53 motifs (Demirkan et al., 2000) (Figure S3).

Notably, basal cell carcinoma, the most common form of skin

cancer, is often characterized by mutations in p53 and CTCF

binding sites (Poulos et al., 2016) and results in uncontrolled

basal cell division. Taken together, these findings demonstrate

that the ability of WNN to identify subpopulations that are

masked by scRNA-seq alone is not limited to immune or CITE-

seq datasets. We conclude that WNN analysis is capable of

sensitively and robustly characterizing populations that cannot

be identified by a single modality, exhibits best-in-class perfor-

mance, and can be flexibly applied tomultiple data types for inte-

grative and multimodal analysis.

A multimodal atlas of the human PBMCs
Although flow cytometry and cytometry by time of flight (CyTOF)

are widely used and powerful approaches for making high-

dimensional measurements of protein expression in immune

cells (Bendall et al., 2011; Bodenmiller et al., 2012; Diggins

et al., 2015; Saeys et al., 2016), CITE-seq’s use of distinct oligo-

nucleotide barcode sequences provides a unique opportunity to

profile very large panels of antibodies alongside cellular tran-

scriptomes. In addition, we have recently demonstrated that

the signal-to-noise for each antibody can be optimized for any in-

dividual marker as a function of antibody concentration, and we

have shown that CITE-seq data quality does not deteriorate with

greater amounts of total antibody (Stoeckius et al., 2018). We

therefore curated and optimized a panel of TotalSeqA reagents

encompassing 228 antibodies (Table S1) comprising a diverse

set of lineage and activation markers.

We leveraged the CITE-seq technology alongside our opti-

mized antibody panel and integrative WNN analysis strategy to

generate a multimodal atlas of human PBMCs. We obtained

PBMC samples from eight volunteers enrolled in an HIV vaccine

trial (Elizaga et al., 2018; Li et al., 2017), with ages spanning from

20–49 years. For each subject, PBMCs were collected at three

time points: immediately before (day 0), 3 days, and 7 days

following administration of a VSV-vectored HIV vaccine (Fig-

ure 3A). For each sample, we profiled cells using 10x Chromium

30 (using 228 TotalSeq A antibodies), representing a total of

161,764 cells (average of 8,003 unique RNA molecules/cell,

5,251 unique ADT/cell). We also profiled a total of 49,147 cells

(54 antibodies) split across all samples using ECCITE-seq
Cell 184, 3573–3587, June 24, 2021 3577



Figure 3. A multimodal atlas of human PBMC
(A) Experimental design schematic of the CITE-seq experiment. PBMC samples originate from eight volunteers pre (day 0) and post-vaccination (day 3 and day 7).

We processed each sample with CITE-seq using the 10x 30 (228 antibodies) and 10x 50 (54 antibodies + BCR + TCR) technologies, yielding a total of 210,911 cells.

(B–D) UMAP visualization of 161,764 cells 10x 30 cells analyzed based on RNA data (B), protein data (C), or WNN analysis (D). Cell types were identified using

unsupervised clustering of the WNN graph and grouped into three annotation tiers, ranging from eight broad categories, to 57 high-resolution clusters. UMAP

visualization of 49,147 10x 50 cells, mapped onto the 30 reference data, is shown in Figure S5.

See also Table S1.
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(Mimitou et al., 2019), which also enables immune repertoire

profiling with the 10x 50 technology. After NovaSeq sequencing,

stringent quality control, and doublet filtration (STAR Methods),

our final dataset consists of 210,911 total cells and allows us

to profile cellular heterogeneity in both the resting (unvaccinated)

and activated (post-vaccination) immune system.

We applied our ‘‘anchor-based’’ workflow (Stuart et al., 2019)

to first integrate the samples together, enabling cells to cluster

together based on their shared biological state, as opposed to

sample-of-origin (STAR Methods). Although this causes unvac-

cinated and vaccinated samples to cluster together initially, it en-

ables us to annotate cell states consistently in all samples, and to

learn cell-type-specific responses in downstream analyses. We

then performed joint analysis of both modalities using WNN inte-

gration, and as a comparative control, visualized the dataset us-

ing the RNA and protein modalities independently (Figures

3B–3D).

We identified 57 clusters in WNN analysis, encapsulating all

major and minor immune cell types and revealing striking cellular

diversity particularly within lymphoid lineages. With rare excep-

tions for infrequent cell types, each cluster included cells from

all 24 samples. Our clusters could be readily grouped into larger

categories, including CD4+ T cells (12 clusters), CD8+ T cells (12

clusters), unconventional T cells (7 clusters), NK cells (6 clusters),

B cells, plasma cells, and plasmablasts (8 clusters), dendritic cells

and monocytes (8 clusters), and rare clusters of hematopoietic

progenitors, platelets, erythrocytes, and circulating innate

lymphoid cells (ILC). To assist in the interpretation of our clusters,

we assign each cell three annotations with increasing granularity
3578 Cell 184, 3573–3587, June 24, 2021
(level 1, 8 categories; level 2, 30 categories; level 3, 57 categories).

Although we saw the greatest level of heterogeneity within T cell

subsets, our analysis clearly identified heterogeneous subsets

of myeloid cells that were fully concordant with recent high-reso-

lution scRNA-seq analyses of sorted populations, including

extremely rare populations (0.02%) of dendritic cells defined by

the expression of AXL and SIGLEC6 (See et al., 2017; Villani

et al., 2017) (ASDC; Figure S4). We also identified substantial het-

erogeneity in the expression of inflammatory genes such as IL1B

andCCL3within monocyte populations, but because this hetero-

geneity varied across different volunteers, we conservatively did

not further subdivide these states (Figure S4).

We next identified differentially expressed RNA and immuno-

phenotype markers for each cluster. We found that each cluster

exhibited distinct molecular patterns and biomarkers for both

modalities (Figure 4A; additional heatmaps in Figure S4). More-

over, these identified biomarkers were invariant across human

volunteers and vaccination time points. Despite the fact that

clusters were enriched for both RNA and protein markers, our

ability to identify these groups was substantially reduced without

WNN analysis, as multiple clusters blended together when per-

forming separate analysis of either RNA or protein data (Figures

3B and 3C). We conclude that multimodal integration is essential

for the unsupervised discovery and annotation of immune cell

states; however, once these states are enumerated, supervised

differential analyses are capable of sensitively describing

markers that define their molecular state.

Due to the robust detection of protein features in CITE-seq

combined with the size of our antibody panel, we reasoned
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Figure 4. Multimodal biomarkers of immune cell states

(A) Heatmap of CD4+ T cell states. Markers include the best RNA and protein features identified by differential expression (DE). Heatmap displays pseudobulk

averages where cells are grouped by cell type, donor, and vaccination time point and demonstrates that markers do not vary across different PBMC samples.

(B) Same as in (A) but for CD8+ T cell states. Additional heatmaps are shown in Figure S4.

(C) For each of our 57 clusters, we calculated the optimal surface marker enrichment panels based on our CITE-seq data. Bar plots show the ability of the panels

to enrich for each cell type in silico. The composition of each panel is shown in Table S2.

(D) Validation of predicted marker panels for the CD8_TEM_5 cluster. We sorted cells based on the marker panels identified in (C), and performed bulk RNA-seq.

Each column represents a replicate bulk RNA-seq profile. Heatmap is ordered by genes expected to be DE based on our CITE-seq dataset and are validated by

bulk RNA-seq.

(E) Same as in (D) but for CD4 CTL cells.
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that we could discover small panels of immunophenotypic

markers to perform targeted enrichment through flow cytometry.

We used stepwise variable selection coupled with logistic

regression (STAR Methods) to identify the best antibody marker

panels of different sizes (1–10 markers) for each subset, and

calculated the level of enrichment in silico (Figure 4C). We found

that a single marker was capable of achieving effective enrich-

ment of at least 10-fold for 45 clusters, whereas a panel with

three markers was sufficient to achieve 10-fold enrichment for

55 clusters.

We confirmed that this marker discovery procedure identifies

effective panels for well-characterized populations (plasmacy-

toid DC [pDC]: CD123+; MAIT cells: CD3+ CD161+ TCRvɑ7.2+;
CD4 naive: CD4+ CD45RA+ CD45RB+). In other instances (e.g.,

cytotoxic populations of CD4+ lymphocytes), our analysis identi-

fied CD43 as a marker with high enrichment power that has not

been previously reported. For this population, as well as a

subgroup of highly cytotoxic CD8+ T cells (CD8_TEM_5), we suc-

cessfully validated our enrichment panels in an independent set

of PBMCs from healthy donors by conventional flow cytometry

followed by bulk RNA-seq (STAR Methods). In both cases, we

examined the expression level of genes that we expected to

be DE-based on our CITE-seq data, and we observed clear

agreement between the sorted bulk profiles and CITE-seq clus-

ters (Figures 4D and 4E). Notably, our flow cytometry experi-

ments utilized the exact antibody clones represented in the
CITE-seq experiment, which can help to ensure that the two as-

says will return concordant results. We report each of these

panels in Table S2 to facilitate similar experiments for additional

clusters in our dataset. We note that although these panels can

achieve high levels of enrichment, even optimally sorted groups

may contain a minority of contaminating cells from other states.

We show precision and recall metrics for each panel in Figure S4,

demonstrating that it remains challenging to sort truly ‘‘homoge-

neous’’ populations of high-resolution subsets using a small

number of markers.

Multimodal heterogeneity within lymphoid populations
Our integrated WNN analysis reveals a rich diversity of T cell

states that is not typically captured in scRNA-seq analyses,

including CD4+ regulatory T cells, MAIT cells, multiple subpopu-

lations of gd and double-negative T cells, along with heteroge-

neous subpopulations of naive, memory, and effector states.

Within CD8+ memory T cells, we identified distinct subpopula-

tions defined by bimodal and mutually exclusive expression of

the integrin proteins CD49a and CD103 (Figure 5A). Although

we identified these cells in peripheral blood, expression of

these proteins has traditionally been strongly associated with

tissue-resident memory (TRM) cells, where integrins help

mediate adhesion to epithelial cells or the extracellular matrix

(Corgnac et al., 2018; Topham and Reilly, 2018). CD8+ CD103+

T cells expressed high surface protein levels of the heterodimeric
Cell 184, 3573–3587, June 24, 2021 3579



Figure 5. Characterizing heterogeneity within lymphoid populations

(A) Mutually exclusive expression of the integrin proteins CD103 and CD49a within CD8+ T memory cells, as measured by CITE-seq.

(B) Differential expression of integrin-7 between CD103+ CD49a� and CD103+ CD49+ populations as measured by CITE-seq.

(C and D) Flow cytometry validates the presence of these populations. Plots are the same as in (A) and (B) but generated via flow cytometry.

(E and F) Differentially expressed genes, and enriched gene ontology terms, between CD103+ CD49a� and CD103� CD49+ populations.

(G) Dot plot showing the representation of the fifteen most abundant T cell clonotypes in the dataset. For space, only the VDJ regions are shown on the y axis, but

all cells in a clone share identical CDR3 sequences. Clones reside in a restricted set of cytotoxic and effector cell states and are shared across vaccination time

points. Size of each dot represents the number of cells in the clonotype. Clones present in donors who were classified as CMV-positive are colored in red.

(H) Cells within a clone exhibit similar molecular profiles. Grey dots represent T cells where TCR sequence was measured using the 10x 50 assay. Cells from the

eight most highly represented clonotypes are highlighted as colored dots.

(I–K) Heterogeneity in NK cells is defined by two gradients correlating with CD16 and CD38 protein expression. (I) NK cells are ordered by their quantitative

expression of CD16 protein expression. Rolling averages for the expression of genes that correlate positively or negatively with CD16 are shown as smoothed

lines. (J) same as (I) but for CD38. (K) CD38 and CD16 protein expression define two separate gradients and are uncorrelated in NK cells.

See also Figure S5 and Table S3.
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co-binding partner integrin beta-7 (Figure 5B), while expression

was absent in CD8+ CD49a+ groups. We validated the presence

of the populations in independent healthy PBMC samples by

performing flow cytometry for the same markers (Figures 5C

and 5D). In addition, we identified modules of differentially ex-

pressed genes between these two groups (Figure 5E), which

were enriched for T cell activation, differentiation, signaling

response, and chemotaxis modules (Figure 5F). Both popula-

tions did not express the canonical residentmarker CD69 (Szabo

et al., 2019; Walsh et al., 2019) (Figure S5), suggesting that they

are not TRMs that have temporarily detached and re-entered cir-

culation. Instead, these subpopulations may represent cells that

are preparing to become tissue-resident and have already begun

to acquire distinguishing molecular characteristics.

In addition to characterizing heterogeneity in mRNA and pro-

tein expression, we leveraged our 50 dataset to explore the rela-

tionship between molecular state and TCR sequence (STAR

Methods). Overall clonal diversity was consistent across vacci-

nation time points, consistent with an expected lack of a

lymphoid response to vaccination within 7 days, and 97% of

clones consisted only of a single cell. However, we also

observed the presence of expanded clonal populations. As a
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positive control, we observed populations with highly restricted

usage of TCRa sequences: both MAIT and invariant NKT cells

exhibited closely related transcriptional profiles (Huang et al.,

2019) and semi-invariant repertoires across multiple volunteers

(Figure S5).

Excluding these populations, we identified 31 additional

expanded clones consisting of at least 10 cells (Figure 5G). In

each case, cells within a clonal population exhibited extremely

similar molecular profiles (Figure 5H), representing subgroups

of CD8+ T cells (primarily within our previously identified

CD8_TEM_4 and CD 8_TEM_5 clusters), as well as cytotoxic

CD4+ T cells (CD4 CTL). Each clone typically represented cells

from a single volunteer, but could be independently found across

multiple time points, including before vaccination (Figure 5G).

Because our sample volunteers were generally middle-aged

and otherwise healthy, we considered the possibility that overex-

panded clones could be related to cytomegalovirus (CMV) infec-

tion (Kim et al., 2015). We assessed the CMV status of each

volunteer by stimulating PBMCs with a CMV peptide pool and

performing intracellular cytokine staining to determine re-

sponses in CD8+ T cells (Table S3; STAR Methods), identifying

five positive and three negative volunteers. We found that the
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five positive samples accounted for 91% of cells within

expanded clones.

We note that although WNN integration improves the ability to

discover distinct cell subpopulations, it can also improve the

characterization of cellular trajectories and continuous sources

of heterogeneity. For example, within B cells, we identified a

continuous trajectory connecting naive to memory cells defined

by the canonical protein markers immunoglobulin D (IgD) and

CD27, along with amodule of correlated genes (Figure S5). Simi-

larly, NK cells were subdivided into five clusters, representing

variation across a continuous landscape. Our data show that

the traditional division of NK cells into CD56-bright and CD56-

dim categories represents a broader continuum defined by

CD16 expression, alongside a module of genes that modulate

cytotoxicity and correlate both positively and negatively with

this marker (Figure 5I).

We also observed a second gradient defined by CD38 expres-

sion that, to our knowledge, has not been previously described.

Notably, KLRC2, which encodes the NK activating receptor

NKG2C was negatively associated with this continuum, while

the signaling adaptor FCER1G was positively associated (Fig-

ure 5J). This expression pattern is consistent with the develop-

ment of ‘‘adaptive’’ or ‘‘memory-like’’ NK cells observed in

CMV seropositive individuals (Lee et al., 2015; Schlums et al.,

2015). Notably, we observed consistent trends when restricting

our analysis only to individuals with either positive or negative

CMV T cell responses (Figure S5). We also observed consistent

results (Figure S5) in an independent CITE-seq dataset of human

PBMCs (Kotliarov et al., 2020). Our results indicate that this

phenotype does not represent a strictly binary phenomenon

and may not be specific to CMV response. Finally, we observed

minimal correlation between CD38 and CD16 expression (Fig-

ure 5K), demonstrating that NK cells fall along a two-dimensional

gradient defined by these markers.

Taken together, these results demonstrate that our dataset

represents a powerful resource to enumerate cell states in the

immune system, identify optimal reagents for cell-type-specific

enrichment, and to understand the molecular heterogeneity in

clonally related or antigen-specific cell groups. Because these

results are consistent in both pre- and post-vaccination time

points, they likely describe general characteristics of the healthy

immune system.

Characterizing the initial innate response to vaccination
We next explored our dataset to characterize the response to

vaccination for each of our previously identified cell types. We

were particularly interested to identify cell populations that

contribute most strongly to the innate immune response, which

is expected to be highly activated at our first vaccinated time

point (day 3), and subsequently dampen in our second time point

(day 7) as seen with another non-replicating viral vectored HIV

vaccine (Zak et al., 2012). As expected, we observed robust re-

sponses in a subset of myeloid subpopulations, but only minimal

responses in lymphoid groups (Figures 6A and 6B). Response

patterns were also largely consistent across samples with the

exception of one volunteer that exhibited a highly activated im-

mune system in advance of vaccination and was removed

from further analysis (Figure S6).
We observed the strongest changes in both CD14+ classical

and CD16+ non-classical monocytes, as both cell types upregu-

lated a sharedmodule of 62 genes highly enriched for transcripts

responsive to type I interferon (Figures 6A, 6B, and S6; visualiza-

tion in Figure 6B from Alquicira-Hernandez and Powell [2020]). In

addition, we identified Siglec-1 (CD169) as a protein response

biomarker that was robustly induced only in day 3 samples (Fig-

ure 6C). When we examined dendritic cell populations, we

observed a similarly robust response only within CD1C+ cDC2

cells. Contrastingly, closely related populations of CD141+

cDC1, as well as ASDC and pDC, exhibited minimal responses,

and we did not detect any DE genes before and after vaccination

for these groups (Figure 6A). This indicates that within DC sub-

groups, cDC2s may perform an important role in the down-

stream priming and activation of the adaptive immune system

during this vaccine response.

We did not observe significant changes during the time course

in overall abundance of broad immune classes (Figure 6E;); thus,

we focused on identifying more subtle compositional changes.

For example, although the overall proportion of monocytes

was consistent across time points, there was a strong shift in

the ratio between classical and non-classical populations be-

tween day 0 and day 3 (Figure 6F). We validated this result, as

well as the observed return to baseline ratios at day 7, using

flow cytometry on the same samples (Figure 6G). We did not

observe changes within lymphoid cells with one exception: a

small population of NK cells expressing proliferation and cell-cy-

cle genes (NK_proliferation), consistently increased upon

vaccination (Figure 6F). These findings were reproducible in in-

dependent analyses of the 30 and 50 scRNA-seq experiments

and persisted in both day 3 and day 7 samples (Figures 6F and

S6). This finding may reflect an early step in the development

and maturation of NK cells, a key component of the NK cell-

mediated innate immune response (Abel et al., 2018).

Mapping query datasets to multimodal references
Single-cell transcriptomic profiling of the immune system has

become routine, not only for healthy subjects, but also inmultiple

clinical contexts including for patients hospitalized with COVID-

19. These datasets are typically processed using a workflow that

consists of unsupervised clustering, which assumes minimal

prior knowledge and is ideally suited for cell type discovery.

However, having constructed a multimodal reference of the im-

mune system, we sought to leverage this dataset to assist in

the analysis and interpretation of additional single-cell experi-

ments profiling human PBMCs (queries), even if only the tran-

scriptome was profiled.

We first apply a procedure known as ‘‘supervised principal

component analysis’’ (sPCA) (Barshan et al., 2011) to the tran-

scriptome measurements in our reference dataset. Instead of

seeking to identify a low-dimensional projection that maximizes

total variance as in PCA, sPCA identifies a projection of the tran-

scriptome dataset that maximally captures the structure defined

in the WNN graph. Formally, given a gene expression matrix X

and a WNN graph Y, sPCA identifies the transformation matrix

U that maximizes the Hilbert-Schmidt Independence Criterion

measure between a linear kernel of UTX and Y (STAR Methods).

Informally, sPCA allows the weighted transcriptome and protein
Cell 184, 3573–3587, June 24, 2021 3581
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Figure 6. Identifying cell-type-specific responses to vaccination
(A) For each of our level 2 annotated cell clusters, we calculated the number of differentially expressed genes between unvaccinated (day 0) and day 3 samples

(size of each dot). As each per-gene test is highly sensitive to the number of cells, we also calculated a ‘‘perturbation score,’’ which reflects the strength of the

molecular response based on the whole transcriptome (color of each dot).

(B) Density plot, produced by the Nebulosa package, showing the expression of canonical interferon response gene IFI27.

(C and D) Violin plot showing the protein upregulation of Siglec-1 (CD169) in single cells fromday 3 samples (C), alongwith a signature of interferon response (D), in

select cell types. In (A)–(D) we consistently observe robust responses only in CD14+ monocytes, CD16+ monocytes, and cDC2 DC.

(E) Bar plot showing that the frequency of broad groups (level 1 annotations) is stable across the vaccination time course.

(F) Within these broad categories, the relative abundance of classical monocytes, nonclassical monocytes, and proliferating NK cells across the vaccination time

course. p values are computed using a paired Wilcoxon test.

(G) Relative abundance of monocyte populations as measured by flow cytometry.

See also Figure S6.
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measurements to help ‘‘supervise’’ the analysis of gene expres-

sion data and identify the optimal transcriptomic vectors (gene

modules) that define the cell states in our multimodal reference.

We compute this sPCA transformation on our reference

(where both mRNA and protein were measured simultaneously),

but can subsequently rapidly project this transformation onto

any scRNA-seq query dataset. Combining this transformation

with our previously described ‘‘anchor’’-based framework (Stu-

art et al., 2019) allows us to place each scRNA-seq query cell

on the previously defined reference UMAP visualization (STAR

Methods) and annotate its identity based on reference clusters.

We found that this supervised mapping procedure dramati-

cally improved our ability to analyze and interpret query

scRNA-seq datasets compared to unsupervised analysis. We

examined a recently generated dataset of human PBMCs prior

to flu vaccination, which measured the transcriptomes of

53,099 cells alongside 82 surface proteins. We mapped this da-

taset onto our reference using only the transcriptome data and

transferred our level 2 annotations, revealing the presence of

multiple high-resolution lymphoid subsets (Figure S7). We veri-

fied the accuracy of our predictions using the query protein

data, which was held out of the reference mapping procedure,

yet revealed expression patterns based on our predicted anno-

tations that were fully concordant with our reference dataset.

For example, cells that were annotated as regulatory T cells ex-

pressed CD25 in the CITE-seq data, and we observed similar re-

sults forMAIT cells (CD161+), memory (CD45RA�CD45RO+) and

naive (CD45RA+ CD45RO�) T cells, and circulating ILC (CD117+

CD25+) (Figure S7). We benchmarked our method against
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scArches, a recently developed method for mapping scRNA-

seq queries to reference datasets (Lotfollahi et al., 2020) and

observed that our approach yielded substantial improvements

in accuracy and performance (Figures 7A, 7B, and S7).

We next applied our mapping approach to a recent scRNA-

seq study analyzing PBMC samples from seven patients hospi-

talized with COVID-19, alongside six healthy controls (Wilk et al.,

2020). The original publication performed unsupervised clus-

tering on the full dataset and identified six T cell clusters (three

CD4+ T, two CD8+ T, and gd T cells). In our supervised analysis,

we transferred our level 2 annotations, successfully dividing

T cells into the 12 groups (Figure 7C, D). Notably, populations

of developing and differentiated neutrophils, which were identi-

fied by the original manuscript as being uniquely present in

COVID-19 samples but were absent from our reference, could

not be successfully mapped (Figure S7).

We leveraged our supervised annotations to test for differ-

ences in cell type abundance across disease conditions. Our

findings recapitulated the original unsupervised analysis, for

example, highlighting increases in plasmablast frequency during

COVID-19 response (Figure S7). However, we also observed

proportional shifts in cell states that were not detected in unsu-

pervised clustering but were successfully annotated after refer-

ence mapping. In particular, we observed a depletion of MAIT

cells in COVID-19 samples compared to healthy controls. To

validate our findings, we performed CyTOF on both the original

samples and a validation cohort of 16 additional samples. We

observed strong quantitative agreement (R = 0.911) in the frac-

tion of MAIT cells predicted by scRNA-seq and measured by
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Figure 7. Supervised mapping of immune perturbations

(A) Violin plots showing the expression patterns for nine proteins in our CITE-seq dataset. Cells are grouped by their WNN-defined T cell level 2 annotations.

(B) Violin plots for the same proteins in an independent CITE-seq dataset of human PBMC (Kotliarov et al., 2020). Cells are grouped based on their predicted

annotations from transcriptome-based reference mapping. The protein data were withheld from the mapping but displays the same patterns as in (A).

(C) UMAP visualization of Wilk et al. (2020) scRNA-seq dataset, which includes 44,721 PBMC from patients hospitalized with COVID-19 and healthy controls.

UMAP was computed using unsupervised analysis.

(D) Same as in (C), but after the dataset has been mapped onto our multimodal reference. Cells are colored by their predicted level-2 annotations.

(E) Quantification of MAIT cell abundance based on scRNA-seq reference mapping (y axis) and CyTOF (x axis) for the samples in Wilk et al. (2020). The Pearson

correlation between these two methods is 0.911.

(F) CyTOF quantification of MAIT cell abundance in PBMC samples from COVID-19 patients and healthy controls. p values are computed using an unpaired

Wilcoxon test.

See also Figure S7.
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CyTOF in the original cohort (Figure 7E). Moreover, CyTOF anal-

ysis of the larger sample set identified a depletion of MAIT cells in

COVID-19 samples (Figures 7F and S7). This change in abun-

dance may reflect these cells exiting circulation to play protec-

tive roles in barrier tissues during the antiviral immune response

(Grimaldi et al., 2014; Hinks and Zhang, 2020; Provine and Kle-

nerman, 2020).

DISCUSSION

In order to leverage multiple data types to define cellular identity,

we developed WNN analysis, a computational method that

learns the information content of each modality and generates

an integrated representation of multimodal data. By calculating

cell-specific modality weights, WNN analysis solves an impor-
tant technical challenge for the analysis of multimodal datasets

and allows for flexible application across a range of modalities

and data types. We demonstrate throughout this manuscript

that performing downstream analyses on a weighted combina-

tion of data types improves our ability to characterize cellular

diversity.

We apply our approach to analyze a dataset of human PBMCs

featuring paired transcriptomes and measurements of 228 sur-

face proteins, representing a multimodal atlas of the immune

system. We leverage this resource to characterize extensive

lymphoid heterogeneity that has not been previously observed

by scRNA-seq alone, including the heterogeneous expression

of integrin proteins on circulating memory T cells, a gradient of

adaptive-like responses in NK cells, and tightly clustered clonal

populations within effector and cytotoxic groups. Our data also
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enable us to explore the response of the innate immune system

to vaccination, highlighting specific response biomarkers, as

well as the heterogeneous responses of conventional DCs.

Importantly, we demonstrate that CITE-seq data can be easily

mined to identify the best immunophenotypic marker panels

for any subpopulation of interest. These marker panels can be

used for flow cytometry with the same antibody clones in our

CITE-seq panel, facilitating rapid enrichment and downstream

analysis of these groups, and broadening the value of our

resource.

In addition to constructing a multimodal reference, we

demonstrate the ability to map scRNA-seq data onto this data-

set. We accomplish this via a supervised version of principal

component analysis to identify the best transcriptomic modules

which delineate our WNN-defined cell types. Supervised map-

ping represents an attractive alternative to unsupervised anal-

ysis, and we show how this workflow can improve cell type

identification and robustly integrate samples from multiple do-

nors and disease states. To assist the community in utilizing

our resource, we have created a web application, freely avail-

able at https://azimuth.hubmapconsortium.org/, which enables

users to rapidly map their own datasets online, automating the

process of visualization and annotation. Using this approach, a

dataset of 50,000 cells can be fully processed and mapped in

less than 5 min. As the profiling of human PBMCs under a va-

riety of disease states becomes increasingly routine, the ability

to perform automated mapping of these datasets will facilitate

the characterization of complex immune responses, and the

discovery of pathogenic populations. We note that our super-

vised mapping is not limited to scRNA-seq and can be

extended to other modalities. For example, future extensions

of this work could modify our supervised PCA procedure to

identify optimal transformations of multiplexed protein mea-

surements. This would enable the mapping of mass cytometry

profiles to our multimodal reference, even in the absence of

transcriptomic data.

Last, we note that the modality weights learned in our proced-

ure serve not only as a proxy for the technical quality of a mea-

surement type, but may also reflect the biological importance

of each modality in determining cellular identity. For example,

our analyses of human bone marrow demonstrated that progen-

itor cells and differentiated cells exhibited divergent modality

weights. As future technologies enable the simultaneous mea-

surement of modalities spanning the central dogma including

chromatin state, DNA methylation, transcription, lineage, spatial

location, and protein levels—WNN analysis may help to reveal

how subpopulations of cells differentially utilize these modalities

to regulate their current state and future potential. Our current

implementation of WNN analysis extends to handle three or

more simultaneously measured modalities, as these technolo-

gies mature. Integrative multimodal analysis therefore provides

a path forward to move beyond the partial and transcriptome-

focused view of a cell and toward a unified definition of cellular

behavior, identity, and function.

Limitations of the study
We note the following limitations with our study. First, WNN re-

quires a dimensional reduction to describe the neighborhood
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structure between cells. This requirement is not compatible

with categorical or low-dimensional data. Second, WNN as-

sumes thatmodalities do not define conflicting sets of cell states.

Although we have not observed this when using molecular data

such as chromatin state, gene expression, and surface protein

abundance, this assumption may be problematic when inte-

grating morphological, functional, and molecular data. In addi-

tion, our circulating immune atlas was constructed from PBMCs

and therefore contains few cells with no nuclei (erythrocytes) or

multi-lobed nuclei (granulocytes).
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gara, O., Estripeaut, D., Araúz, A.B., Simpson, L.J., Holmes, S., et al. (2020).

Mass cytometry analysis of the NK cell receptor-ligand repertoire reveals

unique differences between dengue-infected children and adults. bioRxiv.

https://doi.org/10.1101/2020.07.27.223339.

Mei, H.E., Leipold, M.D., Schulz, A.R., Chester, C., and Maecker, H.T. (2015).

Barcoding of live human peripheral blood mononuclear cells for multiplexed

mass cytometry. J. Immunol. 194, 2022–2031.

Mereu, E., Lafzi, A., Moutinho, C., Ziegenhain, C., McCarthy, D.J., Álvarez-Var-
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Antibodies

B7-H4 BioLegend TotalSeq-A Cat# 358114

C5L2 BioLegend TotalSeq-A Cat# 342407

Cadherin BioLegend TotalSeq-A Cat# 368715

CCR10 Custom made clone 6588-5

CD102 BioLegend TotalSeq-A Cat# 328509

CD103 BioLegend TotalSeq-A Cat# 350231

CD105 BioLegend TotalSeq-A Cat# 323221

CD106 BioLegend TotalSeq-A Cat# 305813

CD107a BioLegend TotalSeq-A Cat# 328647

CD109 BioLegend TotalSeq-A Cat# 323307

CD110 Custom made clone S16017E

CD112 BioLegend TotalSeq-A Cat# 337417

CD115 BioLegend TotalSeq-A Cat# 347325

CD117 BioLegend TotalSeq-A Cat# 313241

CD119 BioLegend TotalSeq-A Cat# 308607

CD11a/CD18 BioLegend TotalSeq-A Cat# 363425

CD11b_1 BioLegend TotalSeq-A Cat# 101265

CD11b_2 BioLegend TotalSeq-A Cat# 301353

CD11c BioLegend TotalSeq-A Cat# 371519

CD122 Custom made clone TU27

CD123 BioLegend TotalSeq-A Cat# 306037

CD124 Custom made clone G077F6

CD126 BioLegend TotalSeq-A Cat# 352813

CD127 BioLegend TotalSeq-A Cat# 351352

CD13 BioLegend TotalSeq-A Cat# 301729

CD133_1 BioLegend TotalSeq-A Cat# 372815

CD133_2 BioLegend TotalSeq-A Cat# 394005

CD134 BioLegend TotalSeq-A Cat# 350033

CD135 BioLegend TotalSeq-A Cat# 313317

CD137 BioLegend TotalSeq-A Cat# 309835

CD138_1 BioLegend TotalSeq-A Cat# 356533

CD138_2 BioLegend TotalSeq-A Cat# 352325

CD14 BioLegend TotalSeq-A Cat# 301855

CD140a BioLegend TotalSeq-A Cat# 323509

CD140b BioLegend TotalSeq-A Cat# 323609

CD141 BioLegend TotalSeq-A Cat# 344121

CD142 BioLegend TotalSeq-A Cat# 365207

CD144 BioLegend TotalSeq-A Cat# 348517

CD146 BioLegend TotalSeq-A Cat# 361017

CD15 BioLegend TotalSeq-A Cat# 323046

CD152 BioLegend TotalSeq-A Cat# 369619

CD154 BioLegend TotalSeq-A Cat# 310843

CD155 BioLegend TotalSeq-A Cat# 337623

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CD158 BioLegend TotalSeq-A Cat# 339515

CD158b BioLegend TotalSeq-A Cat# 312615

CD158e1 BioLegend TotalSeq-A Cat# 312723

CD158f BioLegend TotalSeq-A Cat# 341307

CD16 BioLegend TotalSeq-A Cat# 302061

CD161 BioLegend TotalSeq-A Cat# 339945

CD163 BioLegend TotalSeq-A Cat# 333635

CD164 BioLegend TotalSeq-A Cat# 324809

CD169 BioLegend TotalSeq-A Cat# 346011

CD171 BioLegend TotalSeq-A Cat# 371609

CD172a BioLegend TotalSeq-A Cat# 372109

CD177 BioLegend TotalSeq-A Cat# 315811

CD178 BioLegend TotalSeq-A Cat# 306413

CD18 BioLegend TotalSeq-A Cat# 302121

CD184 BioLegend TotalSeq-A Cat# 306531

CD185 BioLegend TotalSeq-A Cat# 356937

CD186 BioLegend TotalSeq-A Cat# 356021

CD19 BioLegend TotalSeq-A Cat# 302259

CD192 BioLegend TotalSeq-A Cat# 357229

CD193 BioLegend TotalSeq-A Cat# 310729

CD194 BioLegend TotalSeq-A Cat# 359423

CD195 BioLegend TotalSeq-A Cat# 359135

CD196 BioLegend TotalSeq-A Cat# 353437

CD199 BioLegend TotalSeq-A Cat# 358919

CD1a BioLegend TotalSeq-A Cat# 300133

CD1c BioLegend TotalSeq-A Cat# 331539

CD1d BioLegend TotalSeq-A Cat# 350317

CD2 BioLegend TotalSeq-A Cat# 309229

CD20 BioLegend TotalSeq-A Cat# 302359

CD200 Custom made clone OX-104

CD201 BioLegend TotalSeq-A Cat# 351907

CD202b BioLegend TotalSeq-A Cat# 334213

CD203c BioLegend TotalSeq-A Cat# 324627

CD204 BioLegend TotalSeq-A Cat# 371909

CD205 BioLegend TotalSeq-A Cat# 342211

CD206 BioLegend TotalSeq-A Cat# 321143

CD207 BioLegend TotalSeq-A Cat# 352207

CD209 BioLegend TotalSeq-A Cat# 330119

CD21 BioLegend TotalSeq-A Cat# 354915

CD22 BioLegend TotalSeq-A Cat# 363514

CD223 BioLegend TotalSeq-A Cat# 369333

CD226 BioLegend TotalSeq-A Cat# 337111

CD235a BioLegend TotalSeq-A Cat# 349117

CD235ab BioLegend TotalSeq-A Cat# 306623

CD24 BioLegend TotalSeq-A Cat# 311137

CD243 BioLegend TotalSeq-A Cat# 919407

CD244 BioLegend TotalSeq-A Cat# 329527

CD25 BioLegend TotalSeq-A Cat# 302643

(Continued on next page)
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CD252 Custom made clone 11C3.1

CD253 BioLegend TotalSeq-A Cat# 308211

CD26_1 BioLegend TotalSeq-A Cat# 302720

CD26_2 Custom made clone BA5b

CD267 BioLegend TotalSeq-A Cat# 311913

CD268 BioLegend TotalSeq-A Cat# 316925

CD269 BioLegend TotalSeq-A Cat# 357521

CD27 BioLegend TotalSeq-A Cat# 302847

CD270 BioLegend TotalSeq-A Cat# 318813

CD271 BioLegend TotalSeq-A Cat# 345123

CD272 BioLegend TotalSeq-A Cat# 344525

CD273 BioLegend TotalSeq-A Cat# 329619

CD274 BioLegend TotalSeq-A Cat# 329743

CD275_1 BioLegend TotalSeq-A Cat# 309413

CD275_2 BioLegend TotalSeq-A Cat# 329809

CD278 BioLegend TotalSeq-A Cat# 313555

CD279 BioLegend TotalSeq-A Cat# 329955

CD28 BioLegend TotalSeq-A Cat# 302955

CD284 BioLegend TotalSeq-A Cat# 312817

CD29 BioLegend TotalSeq-A Cat# 303027

CD294 BioLegend TotalSeq-A Cat# 350127

CD3_1 BioLegend TotalSeq-A Cat# 300475

CD3_2 BioLegend TotalSeq-A Cat# 344847

CD30 BioLegend TotalSeq-A Cat# 333913

CD301 BioLegend TotalSeq-A Cat# 354707

CD303 BioLegend TotalSeq-A Cat# 354239

CD304 BioLegend TotalSeq-A Cat# 354525

CD305 BioLegend TotalSeq-A Cat# 342805

CD307c/FcRL3 BioLegend TotalSeq-A Cat# 374411

CD307d BioLegend TotalSeq-A Cat# 340209

CD307e BioLegend TotalSeq-A Cat# 340307

CD309 BioLegend TotalSeq-A Cat# 359919

CD31 BioLegend TotalSeq-A Cat# 303137

CD314 BioLegend TotalSeq-A Cat# 320835

CD319 BioLegend TotalSeq-A Cat# 331821

CD324 BioLegend TotalSeq-A Cat# 324125

CD325 BioLegend TotalSeq-A Cat# 350817

CD335 BioLegend TotalSeq-A Cat# 331943

CD337 BioLegend TotalSeq-A Cat# 325221

CD338 BioLegend TotalSeq-A Cat# 332021

CD34 BioLegend TotalSeq-A Cat# 343537

CD340 BioLegend TotalSeq-A Cat# 324423

CD35 BioLegend TotalSeq-A Cat# 333407

CD354 Custom made clone TREM-26

CD357 BioLegend TotalSeq-A Cat# 371225

CD36 BioLegend TotalSeq-A Cat# 336225

CD366 BioLegend TotalSeq-A Cat# 345047

CD370 BioLegend TotalSeq-A Cat# 353807

(Continued on next page)
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CD38_1 BioLegend TotalSeq-A Cat# 303541

CD38_2 BioLegend TotalSeq-A Cat# 356635

CD39 BioLegend TotalSeq-A Cat# 328233

CD4_1 BioLegend TotalSeq-A Cat# 344649

CD4_2 BioLegend TotalSeq-A Cat# 300563

CD40 BioLegend TotalSeq-A Cat# 334346

CD41 BioLegend TotalSeq-A Cat# 303737

CD42b BioLegend TotalSeq-A Cat# 303937

CD43 BioLegend TotalSeq-A Cat# 343209

CD44_1 BioLegend TotalSeq-A Cat# 103045

CD44_2 BioLegend TotalSeq-A Cat# 338825

CD45_1 BioLegend TotalSeq-A Cat# 368543

CD45_2 BioLegend TotalSeq-A Cat# 304064

CD45RA BioLegend TotalSeq-A Cat# 304157

CD45RB BioLegend TotalSeq-A Cat# 310209

CD45RO BioLegend TotalSeq-A Cat# 304255

CD46 BioLegend TotalSeq-A Cat# 352415

CD47 BioLegend TotalSeq-A Cat# 323129

CD48 BioLegend TotalSeq-A Cat# 336709

CD49a BioLegend TotalSeq-A Cat# 328315

CD49b BioLegend TotalSeq-A Cat# 359311

CD49d BioLegend TotalSeq-A Cat# 304337

CD52 BioLegend TotalSeq-A Cat# 316017

CD54 BioLegend TotalSeq-A Cat# 353123

CD55 BioLegend TotalSeq-A Cat# 311317

CD56_1 BioLegend TotalSeq-A Cat# 362557

CD56_2 BioLegend TotalSeq-A Cat# 392421

CD57 BioLegend TotalSeq-A Cat# 393319

CD59 BioLegend TotalSeq-A Cat# 304709

CD61 BioLegend TotalSeq-A Cat# 336423

CD62E BioLegend TotalSeq-A Cat# 336017

CD62P BioLegend TotalSeq-A Cat# 304933

CD63 BioLegend TotalSeq-A Cat# 353035

CD64 BioLegend TotalSeq-A Cat# 305037

CD66a/c/e BioLegend TotalSeq-A Cat# 342319

CD66b BioLegend TotalSeq-A Cat# 392905

CD68 Custom made clone Y1/82A

CD69 BioLegend TotalSeq-A Cat# 310947

CD70 BioLegend TotalSeq-A Cat# 355117

CD71 BioLegend TotalSeq-A Cat# 334123

CD72 BioLegend TotalSeq-A Cat# 316205

CD73 BioLegend TotalSeq-A Cat# 344029

CD79a Custom made clone HM47

CD79b BioLegend TotalSeq-A Cat# 341415

CD8 BioLegend TotalSeq-A Cat# 344751

CD80 BioLegend TotalSeq-A Cat# 305239

CD81 BioLegend TotalSeq-A Cat# 349521

CD83 BioLegend TotalSeq-A Cat# 305339

(Continued on next page)
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CD85 g BioLegend TotalSeq-A Cat# 326411

CD86 BioLegend TotalSeq-A Cat# 305443

CD8a BioLegend TotalSeq-A Cat# 301067

CD9 BioLegend TotalSeq-A Cat# 312119

CD90 BioLegend TotalSeq-A Cat# 328135

CD93 BioLegend TotalSeq-A Cat# 336121

CD95 BioLegend TotalSeq-A Cat# 305649

CD96 BioLegend TotalSeq-A Cat# 338419

CD98 BioLegend TotalSeq-A Cat# 315605

CD99 BioLegend TotalSeq-A Cat# 371317

CLEC12A BioLegend TotalSeq-A Cat# 353613

CLEC2 BioLegend TotalSeq-A Cat# 372009

CX3CR1 BioLegend TotalSeq-A Cat# 355709

Folate BioLegend TotalSeq-A Cat# 391707

Galectin-9 Custom made clone 9M1-3

GP130 Custom made clone 2E1B02

HLA-DR BioLegend TotalSeq-A Cat# 307659

IgD BioLegend TotalSeq-A Cat# 348243

IgM BioLegend TotalSeq-A Cat# 314541

Integrin_7 BioLegend TotalSeq-A Cat# 321227

LOX-1 BioLegend TotalSeq-A Cat# 358611

MERTK BioLegend TotalSeq-A Cat# 367617

Notch_1 BioLegend TotalSeq-A Cat# 352109

Notch_2 BioLegend TotalSeq-A Cat# 345411

Podoplanin BioLegend TotalSeq-A Cat# 337019

Rag_IgG2c BioLegend TotalSeq-A Cat# 400739

Rat_IgG1_1 BioLegend TotalSeq-A Cat# 400459

Rat_IgG1_2 BioLegend TotalSeq-A Cat# 401919

Rat_IgG2b BioLegend TotalSeq-A Cat# 400673

Siglec-8 Custom made clone 7C9

TCR_1 BioLegend TotalSeq-A Cat# 331229

TCR_2 BioLegend TotalSeq-A Cat# 306737

TCR_V_2 BioLegend TotalSeq-A Cat# 331433

TCR_V_24_J_18 BioLegend TotalSeq-A Cat# 342923

TCR_V_7.2 BioLegend TotalSeq-A Cat# 351733

TCR_V_9 BioLegend TotalSeq-A Cat# 331311

TIGIT BioLegend TotalSeq-A Cat# 372725

TIM-4 BioLegend TotalSeq-A Cat# 354009

TSLPR BioLegend TotalSeq-A Cat# 322907

VEGFR-3 Custom made clone 9D9F9

XCR1 BioLegend TotalSeq-A Cat# 372613

CD3 Custom made clone UCHT1

CD4 Custom made clone RPA-T4

CD8 Custom made clone RPA-T8

TCRb Custom made clone IP26

TCRg Custom made clone B1

CD44 Custom made clone BJ18

CD62L Custom made clone DREG-56

(Continued on next page)

ll
OPEN ACCESS

e5 Cell 184, 3573–3587.e1–e20, June 24, 2021

Resource



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Ox40 (CD134) Custom made clone Ber-ACT35

PD1 (CD279) Custom made clone EH12.2H7

PD-L1 Custom made clone 29E.2A3

EpCAM (CD326) Custom made clone 9C4

CD66b Custom made clone 6/40C

MHCII (HLA-DR) Custom made clone L243

CD45 Custom made clone H130

CD19 Custom made clone H1B19

B220 (CD45R) Custom made clone RA3-6B2

CD11c Custom made clone 3.9

CD14 Custom made clone M5E2

CD34 Custom made clone 581

CD56 Custom made clone 5.1H11

CD16 Custom made clone B73.1

CD2 Custom made clone TS1/8

CD5 Custom made clone UCHT2

CD45RA Custom made clone HI100

CD45RO Custom made clone UCHL1

CCR7 Custom made clone GO43H7

CD11b Custom made clone ICRF44

CD1a Custom made clone HI149

CD27 Custom made clone M-T271

CD69 Custom made clone FN50

PECAM (CD31) Custom made clone WM59

CD138 Custom made clone DL-101

CD24 Custom made clone ML5

Siglec-8 Custom made clone 7C9

LAMP1 Custom made clone H4A3

C-kit (CD117) Custom made clone 104D2

IL7Ralpha (CD127) Custom made clone A019D5

CTLA4 Custom made clone BNI3

HLA-A,B,C Custom made clone W6/32

CD77 Custom made clone 5B5

CD366 (tim3) Custom made clone F38-2E2

CLA Custom made clone HECA-452

CD28 Custom made clone CD28.2

CD7 Custom made clone CD7-6B7

CD26 (Adenosine) Custom made clone BA5b

PD-1 (CD279) Custom made clone NAT105

PD-L1 (CD274) Custom made clone MIH1

CD161 Custom made clone CD161

CD123 Custom made clone CD123

CD25 Custom made clone CD25

IgG1 Custom made clone MOPC21

IgG2a Custom made clone MOPC273

CD45RA Custom made clone HI100

CD45RO Custom made clone UCHL1

(Continued on next page)
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Biological samples

Human PBMC Cape Town HVTN Immunology

Lab, South Africa

https://www.chil.org.za/

Human PBMC AllCells Lot 3032552

Critical commercial assays

30 scRNA-seq kit 10x Genomics v3 GEM kit

50 VDJ-seq kit 10x Genomics v1 V(D)J kit

Deposited data

Human PBMC this paper – CITE-seq, ECITE-seq This paper GEO: GSE164378 dbGAP:

phs002315.v1.p1

Human cord blood mononuclear cells – CITE-seq Stoeckius et al., 2017 GEO: GSE100866

Human bone marrow mononuclear

cells – CITE-seq

Stuart et al., 2019 GEO: GSE128639

Human PBMC – ASAP-seq Mimitou et al., 2020 GEO: GSE156473

Human PBMC – 10x multiome

ATAC+Gene expression

Single Cell Multiome ATAC +

Gene Exp. Datasets

https://support.10xgenomics.com/

single-cell-multiome-atac-gex/datasets

Mouse skin cells – SHARE-seq Ma et al., 2020 GEO: GSE140203

Human PBMC–CITE-seq Kotliarov et al., 2020 https://nih.figshare.com/collections/Data_

and_software_code_repository_for_Broad_

immune_activation_underlies_shared_set_

point_signatures_for_vaccine_responsiveness_

in_healthy_individuals_and_disease_activity_

in_patients_with_lupus_Kotliarov_Y_Sparks_

R_et_al_Nat_Med_DOI_https_d/4753772

Human PBMC – scRNA-seq Wilk et al., 2020 https://www.covid19cellatlas.org/

index.patient.html

Software and algorithms

Seurat v4 This paper https://github.com/satijalab/seurat

Azimuth This paper https://azimuth.hubmapconsortium.org/

Seurat v3.2.0 Stuart et al., 2019 https://github.com/satijalab/seurat/

releases/tag/v3.2.0

SCTransform v0.3.2 Hafemeister and Satija, 2019 https://github.com/ChristophH/sctransform

Cell Ranger v3.1.0 10x Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/

latest/installation

Cell Ranger vdj v3.0.2 10x Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/

latest/installation

Salmon Alevin v1.3.0 Srivastava et al., 2019 https://salmon.readthedocs.io/en/

latest/alevin.html

totalVI v0.6.7 Gayoso et al., 2019 https://github.com/YosefLab/scvi-tools

MOFA+ v1.1 Argelaguet et al., 2020 https://biofam.github.io/MOFA2

scArches v0.1.2 Lotfollahi et al., 2020 https://github.com/theislab/scarches

uwot v 0.1.10 McInnes et al., 2018 https://github.com/jlmelville/uwot

Presto v1.0.0 Korsunsky et al., 2019 https://github.com/immunogenomics/presto

Signac v1.0.0 Stuart et al., 2020 https://satijalab.org/signac/index.html

R R Core https://www.r-project.org/

Python Python Software Foundation https://www.python.org/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Rahul

Satija (rsatija@nygenome.org)

Materials availability
No unique reagents were generated for this study.

Data and code availability
CITE-seq data generated for this manuscript is available to download and explore at https://atlas.fredhutch.org/nygc/

multimodal-pbmc/. All CITE-seq and ECITE-seq raw data are available in GEO database under the accession number GEO:

GSE164378. All raw sequencing data are deposited in the dbGaP under the accession number dbGaP: phs002315.v1.p1.

Seurat v4 is released under the open source GPLv3 license, and all code is available at https://www.github.com/satijalab/seurat.

To facilitate themapping of new query datasets to themultimodal PBMC reference described in this manuscript, we have released an

automated web app, Azimuth: https://azimuth.hubmapconsortium.org/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

HIV vaccine trial specimens
HVTN 087 (NCT01578889) was a phase 1a HIV vaccine trial that tested intramuscular electroporation of a DNA vaccine with or

without IL-12 adjuvant delivered as a plasmid at months 0, 1 and 3 followed by boosting with VSV-vectored HIV gag vaccine at month

6 (Elizaga et al., 2018; Li et al., 2017). Eight participants in this trial were selected for single cell analysis from Group 1 (no IL-12) and

Group 3 (1000 mcg IL-12) based on sample availability. Participant demographics and group assignments are listed in Table S1.

Blood was collected immediately before the first VSV-Gag administration and at sequential time points afterward. PBMC were iso-

lated and cryopreserved as previously described (Bull et al., 2007).

METHOD DETAILS

Antibody titration, staining, and cleanup
For CITE-seq / TotalSeq-A / 3P scRNA-seq experiments, we pooled together 228 TotalSeq-A antibodies from BioLegend (Table

S2). In preliminary experiments designed to test the balance of markers in the panel, reads corresponding to 12 antibodies each

took up more than 2% of the total sequencing space, and combined together, accounted for half of the total antibody reads. The

signal for each of these markers was reduced by addition of a proportional amount of unlabeled antibodies. We recommend the

addition of unlabeled antibodies as an effective strategy to modify existing panels to be more robust to sequencing saturation from

highly expressed protein markers. CITE-seq antibodies and unlabeled blocking antibodies were then combined in PBS and

concentrated with a 50 kDa Amicon filter as per manufacturer’s instructions. Post elution, BSA was added to a final concentration

of 2%.

For ECCITE-seq / TotalSeq-C / 5P scRNA-seq experiments, we used a combination of antibody:oligo conjugates designed for

ECCITE-seq (Mimitou et al., 2019), conjugated as described (Stoeckius et al., 2018), and commercially available TotalSeq-C re-

agents. 52 ECCITE-seq antibodies (Mimitou et al., 2019) were pooled together at a concentration of 1 mg each per test, and com-

bined with TotalSeq-C reagents for CD45RA and CD45RO at 0.25 mg each per test. Antibodies were pooled together and concen-

trated in a 50 kDa Amicon filter as per manufacturer’s instructions in PBS. Post elution, BSA was added to a final concentration

of 2%.

CITE-seq staining and sample preparation
Tominimize batch effects, for each experiment we processed frozen PBMCs from four different patients at 3 different time points (day

0, day 3, and day 7). After thawing, cells were incubated with FcX block (BioLegend) for 10 min. Cells were then divided into separate

aliquots and processed independently for the 3P and 5P protocols.

For the 3PCITE-seq staining protocol, samples were stained simultaneously with the antibody/block pool and a unique hashtag for

30 min. Cells were then washed 3 times in staining buffer (2% BSA, 0.01% Tween in PBS) and filtered using a 40 mm Flowmi filter in

PBS and pooled in equal proportions. Cells were loaded into 8 lanes of a 10x Genomics Chip B, at 45,000 cells per lane using the 10x

Genomics 30 v3 GEM kit.

For the 5P ECCITE-seq staining protocol, each sample of cells was first stained with a unique hashtag for 30 min. Cells were then

washed 3 times in staining buffer, pooled together, and stained with the antibody panel for 30min. The pool of cells was then washed

3 times in staining buffer and filtered using a 40mm Flowmi filter in PBS. Cells were loaded into 2 lanes of a 10x Genomics Chip A, at

45000 cells per lane, using the 10x Genomics V(D)J kit (v1).
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For both 3P and 5P experiments, first strand cDNA was generated by incubating the emulsions according to the respective 10x

Genomics protocol. Emulsions were then broken and nucleic acids recovered Subsequent library preparation steps are detailed

in the section below.

Library prep
CITE-seq / 3P scRNA-seq

The 10x 3P v3 protocol was followed according to manufacturer’s instructions for cDNA amplification, with the following

modifications:

d During cDNA amplification, 0.2 mM of ADT additive primer (50CCTTGGCACCCGAGAATTCC) and 0.2 mM of HTO additive

primer (50GTGACTGGAGTTCAGACGTGTGCTC) were added to the reaction.

d During cDNA cleanup, the supernatant from the 0.6x SPRI cleanup was saved and purified with two rounds of 2x SPRI. The

eluate was split and used as template for production of ADT and Hashtag libraries:

d Hashtag libraries were generated by PCR using Kapa Hifi Master Mix, 10 mM 10x Genomics SI-PCR primer

(50AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC), and 10 mM Illumina TruSeq DNA D7xx primer

(50CAAGCAGAAGACGGCATACGAGATxxxxxxxxGTGACTGGAGTTCAGACGTGTGC). Following amplification, Hashtag li-

braries were and cleaned up with 1.6x SPRI.

Antibody tag libraries were generated by PCR using Kapa Hifi Master Mix, 10 mM10x Genomics SI-PCR primer, and 10 mMTruSeq

Small RNA RPIx primer (50CAAGCAGAAGACGGCATACGAGxxxxxxxxGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA)

Following amplification, Antibody tag libraries were and cleaned up with 1.6x SPRI.

ECCITE-seq / 5P scRNA-seq / immune receptor:

The 10x Immune Profiling v1 protocol was followed according to manufacturer’s instructions for cDNA amplification, with the

following modifications:

d During cDNA amplification, 0.2 mM each of ADT (50CCTTGGCACCCGAGAATT*C*C), HTO (50GTGACTGGAGTTCAGAC

GTGTGC*T*C), and TotalSeq-C additives (50 CTCGTGGGCTCGGAGATGTGTATAAGAGACAG) were added to the

reaction.

d Post cDNA cleanup, a 0.6x SPRI cleanup was performed, where larger cDNA fragments were kept on the beads, and the

smaller tag libraries were retained in the supernatant. From the material retained on the beads, a portion of the eluted material

was used to generate TCR a/b libraries (as written in the 10x protocol), BCR libraries (as written in the 10x protocol) and TCR g/

d libraries (as written in the 10x protocol for TCR a/b, with these modifications):

d 5 mL of cDNA was taken into the initial reaction

d For the first PCR, instead of the TCR1 primer mix provided by 10x genomics, we substituted our own mix consisting of primers

50AGCTTGACAGCATTGTACTTCC and 50TGTGTCGTTAGTCTTCATGGTGTTCC

d For the second PCR, instead of the TCR2 primer mix provided by 10x Genomics, we substituted our own of primers consisting

of 50TCCTTCACCAGACAAGCGAC and 50GATCCCAGAATCGTGTTGCTC

d The 0.6X SPRI supernatant remaining following cDNA cleanup was subjected to 2 rounds of 2x SPRI. The eluate was split into

three reactions for tag library production:

d Hashtag libraries were created by performing a PCR reaction consisting of Kapa Hifi Master Mix, 10 mM10x Genomics SI-PCR

primer, and 10 mM Illumina TruSeq DNA D7xx primer.

d Antibody libraries (for homemade conjugates) were created by performing a PCR reaction with Kapa HifiMasterMix, 10 mM10x

Genomics SI-PCR primer, and 10 mM TruSeq Small RNA RPIx primer.

d TotlaSeq-C antibody libraries were created by performing a PCR reaction with 2x Kapa Hifi Master Mix, 10 mM 10x Genomics

SI-PCR primer, and 10 mM Nextera indexing primer (CAAGCAGAAGACGGCATACGAGATxxxxxxxxGTCTCGTGGGCT

CGGAGATGTGTATAAGAGACAG).

Sequencing

For 3P libraries, the samples were pooled in a ratio of 80% RNA, 12% ADT, and 8% HTO.

For the 5P libraries, the samples were pooled in a ratio of 70%RNA, 12%ADT, 8%HTO, 5%of TCR libraries (with equal amounts of

a/b and g/d libraries), and 5% of BCR libraries. 3P and 5P libraries were then pooled together in equal amounts and sequenced on an

Illumina Novaseq S4 flowcell.

Validation of targeted immunophenotype panels experiments
Commercially available cryopreserved PBMCs (AllCells) were thawed into DMEM with 10% FBS. Two million cells per condition (4

conditions) were spun down in Eppendorf tubes at 4�C for 5 min at 400 g, and resuspended in 100 ml PBS with 2%BSA. Each aliquot

was incubated for 10 min with 10 mL of FcX block, followed by staining with flow cytometry antibodies (BioLegend) on ice for 30 min.

Cells were washed three times with PBS with 2% BSA. Samples were then gated as described below and sorted directly into Buffer

RLT (QIAGEN).
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Antibodies used (all at 5uL per condition unless otherwise noted):
Specificity Fluorophore Clone Note

CD3 AF488 UCHT1 10uL of antibody used

CD8 APC-Cy7 SK1

CD4 AF700 RPA-T4

CD57 PE QA17A04

CD56 APC 5.1H11

CD103 BV421 Ber-ACT8

Integrin 7 PE FIB504

CD49a APC TS2/7 BioLegend

CD43 PE CD43-10G7 BioLegend
Gating conditions for each of the validation experiments are shown in Figures 4D and 4E.

Post sorting, samples were each split into quintuplicates, and then cleaned up with 2x SPRI. Samples were then brought into

reverse transcription in an adaptation of SMARTseq2 (Picelli et al., 2014) and SCRB-seq (Soumillon et al., 2014) as described

here: https://dx.doi.org/10.17504/protocols.io.nkgdctw.

The pooled library was sequenced on an Illumina Nextseq (50 R1, 8 index, 34 R2). Post base calling, samples were aligned using a

wrapper for DropSeqTools against the human reference hg19 to generate RNA counts matrices.

To assess the agreement between single-cell datasets and bulk-sorted experiments, we examined the top DE genes separating

our gated populations in the CITE-seq reference dataset. We next visualized the relative expression of these genes in the heatmaps in

Figures 4D and 4E. The bulk-sorted populations exhibited highly concordant relative expression patterns for DE genes as we

observed in CITE-seq data.

Flow cytometry analysis of whole blood
Whole blood collected immediately before the first VSV gag administration and then 1 and 7 days after was stained in TruCOUNT

tubes as previously described (Elizaga et al., 2018; Hensley et al., 2012; Hensley-McBain et al., 2014) using the following antibody

staining panel: (antibodies from BD Biosciences, unless otherwise indicated): CD14–V450, CD19–V450, CD45–AmCyan, CD4–FITC,

CD8–PerCP-Cy5.5, CD123–PE, HLA-DR–ECD (Beckman Coulter), CD86–PE-Cy5, CD56–PE-Cy7, CD11c–APC, CD3–Alexa700 and

CD16–APC-Cy7. We used these measurements in Figures 6G and 6H to validate changes in cell type abundance that were detected

by scRNA-seq.

Determination of cellular responses to CMV
Intracellular cytokine staining assays were conducted as described in Li et al. (2017) and the proportion of CD8+ T cells expressing IL-

2 and/or IFN-g after stimulation with a CMV peptide pool as well as the response call are listed are in Table S1.

Mass cytometry
PBMC from patients with nasopharyngeal swab PCR-confirmed COVID-19 and healthy controls were thawed into warm RPMI (Hy-

Clone/Thermo Scientific) supplemented with 10% FBS and 0.53 106 cells per sample were transferred into a 96-well plate for stain-

ing. Cells were stained as previously described in Vendrame et al. (2020), using the panel described in McKechnie et al. (2020) with

the addition of the following antibodies to identify MAIT cells: anti-CD161 (DX12, BD Biosciences) conjugated on 141Pr and TCR

Va7.2 (clone 3C10, Biolegend) conjugated on 162Dy. Antibodies were conjugated using MaxPar� X8 Conjugation Kits (Fluidigm,

South San Francisco, CA, USA) or purchased pre-conjugated from Fluidigm.With the exception of the antibodies added, the immune

profiling panel was premixed and frozen at �80�C in order to ensure antibody stability and minimize differential staining between

batches as described inMcKechnie et al. (2020). Briefly, cells were washed with PBS (Rockwell) and resuspended in 25mM cisplatin

(Enzo, Farmingdale, NY, USA) for sixty seconds to stain for viability before being quenched with undiluted FBS. Samples were multi-

plexed by staining with CD45-Pd barcodes as previously described (Mei et al., 2015), washed thoroughly in CyFACS buffer (PBS,

0.1% BSA, 2mM EDTA, 0.05% sodium azide), and pooled into sets of barcodes. Barcoded samples were then stained with all an-

tibodies for 30 min, washed with CyFACS buffer, and fixed in 2% Paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA,

USA) for 20 min at room temperature. Fixed cells were permeabilized with 1x eBiosciences Permeabilization Buffer. Manufacturer

ThermoFisher Scientific (Waltham, MA). Samples were washed, resuspended in 2% PFA containing iridium intercalator (Fluidigm),

and stored at 4�C until acquisition (within 3 days of staining). On the day of acquisition, samples were washed once with PBS and

thrice with Milli-Q water before being resuspended in 13 EQ Beads (Fluidigm) and collected on a Helios mass cytometer (Fluidigm).
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Prior to analysis, fcs fileswere debarcoded and bead-normalizedwith EQbeads using the Premessa package in the open-source sta-

tistical software R as previously described (Finck et al., 2013). FlowJo v10.7.1 was used to visualize the data and used to gate out beads,

dead cells, doublets, and cell debris. MAIT cells were identified by expression of CD3, CD161, and TCR Va 7.2 as shown in Figure S7.

Weighted Nearest Neighbor Analysis
The weighted nearest neighbor (WNN) procedure implemented in Seurat v4 is designed to integrate multiple types of data that are

collected in the same cells to define a single unified representation of single-cell multimodal data. For each cell, the procedure learns

a set of modality weights, which reflect the relative information content for each data type in that cell. This enables the generation of a

WNN graph: for each cell, this graph denotes the most similar cells in the dataset based on a weighted combination of protein and

RNA similarities. The WNN graph can be used as input for common downstream analytical tasks including tSNE or UMAP visualiza-

tion, graph-based clustering, and the identification of developmental trajectories.

Our approach consists of four broad steps, as explained in detail below: (1) Constructing independent k-nearest neighbor (KNN)

graphs for both modalities. (2) Performing within and across-modality prediction (3) Calculating cell-specific modality weights. (4)

Calculating a WNN graph.

All methods are implemented in our open-source R package Seurat (https://www.satijalab.org/seurat, https;//www.github.com/

satijalab/seurat).

Constructing k-nearest neighbor graphs for each modality

The WNN procedure begins by first applying standard analytical workflows to each modality independently and constructing KNN

graphs for each one. In this manuscript we analyze data falling into three categories: measurements of single-cell gene expression,

single-cell surface protein expression, and single-cell chromatin accessibility (ATAC-seq). For most analyses in this manuscript, we

use a default value of k = 20, which is also the default value of k in the standard Seurat clustering workflow. For the analysis of the

multimodal PBMCatlas, due to the substantial size of the dataset, we used a value of k = 30. In Figure S2, we show that we obtain very

similar results from the WNN procedure when varying k across a series of values ranging from 10 to 50.

For clarity, we overview the analytical workflows for each data type below:

Single-cell gene expression: We analyze scRNA-seq data using standard pipelines in Seurat which include normalization, feature

selection, and dimensional reduction with PCA. We then construct a KNN graph after dimensional reduction.

We emphasize thatWNN analysis can leverage any scRNA-seq preprocessing workflow that generates a KNNgraph. For example,

users can preprocess their scRNA-seq data with a variety of normalization tools including log-normalization, scran (Lun et al., 2016)

or SCTransform (Hafemeister and Satija, 2019), and can utilize alternative dimensional reduction procedures such as factor analysis

or variational autoencoders. In this manuscript, we use workflows that are available in the Seurat package, and detail exact settings

for each analysis later in this document.

Single-cell cell surface protein level expression: We analyze single-cell protein data (representing the quantification of antibody-

derived tags (ADTs) in CITE-seq or ASAP-seq data) using a similar workflow to scRNA-seq. We normalize protein expression

levels within a cell using the centered-log ratio (CLR) transform, followed by dimensional reduction with PCA, and subsequently

construct a KNN graph. Unless otherwise specified, we do not perform feature selection on protein data, and use all measured

proteins during dimensional reduction.

Single-cell chromatin accessibility: We analyze single-cell ATAC-seq data using our previously described workflow (Stuart et al.,

2019), as implemented in the Signac package. We reduced the dimensionality of the scATAC-seq data by performing latent se-

mantic indexing (LSI) on the scATAC-seq peak matrix, as suggested by Cusanovich et al. (2018). We first computed the term fre-

quency-inverse document frequency (TF-IDF) of the peak matrix by dividing the accessibility of each peak in each cell by the total

accessibility in the cell (the ‘‘term frequency’’), andmultiplied this by the inverse accessibility of the peak in the cell population. This

step ‘upweights’ the contribution of highly variable peaks and down-weights peaks that are accessible in all cells. We then multi-

plied these values by 10,000 and log-transformed this TF-IDF matrix, adding a pseudocount of 1 to avoid computing the log of 0.

We decomposed the TF-IDF matrix via SVD to return LSI components, and scaled LSI loadings for each LSI component to mean

0 and standard deviation 1.

As described for scRNA-seq analysis, while we use Seurat and Signac functions in this manuscript, any analytical workflow that

computes a KNN graph for surface protein or chromatin accessibility data can also be used in the first step of WNN analysis.

Performing within and cross-modality predictions

Suppose we have a CITE-seq dataset where two modalities, RNA and protein, are measured in each single cell. From the previous

step, we define the following:

ri: L2-normalized low-dimensional vector representing the RNA profile for cell i

pi: L2-normalized low-dimensional vector representing the protein profile for cell i

fknnr;i;1:::knnr;i;kg: the set of k-nearest RNA neighbors for cell i

fknnp;i;1:::knnp;i;kg: the set of k-nearest protein neighbors for cell i
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We average the low-dimensional profiles of each neighbor set, which represent a prediction for the molecular contents for cell i

based on their local neighborhoods. We perform both within-modality and cross-modality prediction:

Within-modality prediction:

br i;knnr =
Pk
j =1

rknnr;i;j

k
: prediction of RNA profile for cell i; based on RNA neighbors
bpi;knnp =

Pk
j =1

pknnp;i;j

k
: prediction of protein profile for cell i; based on protein neighbors
Cross-modality prediction:
br i;knnp =

Pk
j = 1

rknnp;i;j

k
: prediction of RNA profile for cell i; based on protein neighbors
bpi;knnr =

Pk
j = 1

pknnr;i;j

k
: prediction of protein profile for cell i; based on RNA neighbors

Calculating cell-specific modality weights

We next calculate the similarity between predicted values for each cell br i and bpi, and the actual values ri and pi. We first compute

Euclidean distances between predicted and actual values, and next convert these to affinities using the exponential kernel utilized

in UMAP (McInnes et al., 2018). In McInnes et al. (2018), the authors demonstrate that the distance between a cell and its first nearest

neighbor (‘local connectivity’) functions as distance gap that inflates values in both the numerator and denominator of the exponent.

Therefore, they subtract local connectivity from cellular distances when computing the exponential kernel.

qrna

�
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�
1A affinity between ri and predicted RNA profile ðbased on RNA knnÞ
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In the equations above, d represents the Euclidean distance metric, and sr;i and sp;i represent the bandwidth of the RNA and protein

kernels for cell i. A commonly used approach is to set the bandwidth of a kernel to reflect the distance between a cell and its k-th

nearest neighbor, resulting in an adaptive bandwidth that is specific to each cell (Haghverdi et al., 2016; van Dijk et al., 2018). How-

ever, the value of k used to compute this bandwidth is typically fixed across all cells. We considered that cells originating from rare

states should not have the same bandwidth constraint as cells originating from abundant states, and therefore considered amodified

approach to select kernel bandwidths.

Our approach is inspired by the concept of large margin nearest neighbors, which aims to identify kernel bandwidths that separate

data points in the same class from those in different classes, even if the classes are closely related (Weinberger and Saul, 2009). In the

context of unsupervised single-cell analysis (where the data points are unlabeled), we aim to identify a kernel bandwidth that groups

together cells in the same state, yet divides cells that originate from closely related (but different) states.

Recent work has clearly demonstrated that KNN-graphs are prone to the formation of spurious edges, which represent links be-

tween cells that share some similarity molecular profiles, but are not in a matched molecular state (Levine et al., 2015). However, it is

possible to identify these spurious edges through the use of the Jaccard metric. This identifies the number of shared nearest neigh-

bors between two cells, thereby exploiting the local density of each data point to separate well-supported from spurious edges.

For each cell i, we therefore aim to identify the 20 cells in the dataset with the lowest non-zero Jaccard similarity. We expect that

these represent cells that exhibit some similarity with cell i, but are unlikely to reside in the samemolecular state. If more than 20 cells

share the same Jaccard value, we select the 20 with the furthest euclidean distance to cell i. We take the average of the Euclidean

distances from cell i to the 20 selected cells, and set this as the cell-specific kernel bandwidth.

We next calculate the ratio between the affinities for ri with predictions based on RNA neighbors, and predictions based on protein

neighbors. A large ratio suggests that the local neighborhood of the cell, as defined by its RNA neighbors, better reflects its molecular

state. We calculate the analogous ratio for protein affinities. In both cases, we add a small ε(10�4) to the denominator to avoid nu-

merical errors.

srnaðiÞ =
qrna

�
ri; br i;knnr�

qrna

�
ri; br i;knnp�+ ε

; sproteinðiÞ=
qprotein

 
pi; bpi;knnp

!

qprotein

�
pi; bpi;knnr

�
+ ε
Finally, we normalize these values with a softmax transformation.
 The resulting two values are non-negative, and together sum to 1.

We refer to these as cell-specific modality weights.

wrnaðiÞ = esrnaðiÞ

esrnaðiÞ + esproteinðiÞ; wproteinðiÞ= esproteinðiÞ

esrnaðiÞ + esproteinðiÞ

Calculating a WNN graph

We leverage the cell-specific modality weights calculated above to define a new similarity metric between any two cells, which re-

flects a weighted combination of RNA and protein affinities. For two cells i and cell j, we define their weighted similarity as:

qweightedði; jÞ = wrnaðiÞqrnaðri; rjÞ+wproteinðiÞqprotein
�
pi;pj

�

We then construct a WNN graph, defined as a KNN graph con
structed using this weighted similarity metric. For each cell, we

consider the set

knnr;i;1:::knnr;i;200Wknnp;i;1:::knnp;i;200 and identify the k

�most similar cells within this set based on the weighted similarity metric as weighted nearest neighbors

Extending WNN to process more than two simultaneously measured modalities

TheWNNmethod can be generalized to analyze single-cell datasets with three or more simultaneously measured modalities. Briefly,

we perform within-modality comparisons for each modality, and extend the concept of cross-modality predictions to all pairwise

combinations of modalities. We calculate affinity rations comparing within-modality predictions to cross-modality predictions and

normalize these values with a softmax transformation. These ideas are a generalization of the methods described for two modalities,

with a full mathematical description below for clarity:

Suppose the single-cell dataset has M modalities, we define the following:

m, n: Two different modalities in the dataset m˛½1; 2; :::M�;n˛½1;2; :::M�;msn,

Xm
i : L2-normalized low-dimensional vector representing the modality m profile for cell i

fknnm;i;1:::knnm;i;kg: the set of k-nearest neighbors from modality m for cell i

Within-modality prediction:
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bXm
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: prediction of Xm

i ; based on neighbors from modality m
Pairwise cross-modality prediction:
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=
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Xm
knnn;i;j

k
;msn: prediction of Xn

i ; based on neighbors from modality m
We next calculate the within and cross-modality affinities, qm;mðX
m
i ;
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Þ and qm;nðXm

i ;
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Þ between within and cross-modality
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i .
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Pairwise affinity ratios (we add a small ε(10�4) to the denominato
r to avoid numerical errors):

sm;nðiÞ =
qm;m

�
Xm
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bXm

i;knnm

�
qm;n

�
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i ;
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�
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Finally, we normalize these pairwise affinity ratios with a softmax
 transformation. The resulting m modality weights for each cell are

non-negative and together sum to 1.

wmðiÞ =
P
n

esm;nðiÞP
m

P
n

esm;nðiÞ;msn
For two cells i and cell j, we define their weighted similarity as:
qweightedði; jÞ =
X
m

wmðiÞqmði; jÞ
We then construct a WNN graph, defined as a KNN graph con
structed using this weighted similarity metric. For each cell, we

consider the set knn1;i;1:::knn1;i;200Wknn2;i;1:::knn2;i;200W:::WknnM;i;1:::knnM;i;200 and identify the k-most similar cells within this set

based on the weighted similarity metric as weighted nearest neighbors.

Preprocessing details for each dataset
Cord blood mononuclear cells (CBMC) CITE-seq dataset

This CBMC dataset is a CITE-seq dataset from Stoeckius et al. (2017) and contains 8,617 cells with a panel of ten antibodies. We use

the expression matrices as quantified in the original experiment. This experiment includes a small proportion of spiked-in murine 3T3

cells as negative controls. We apply SCTransform (Hafemeister and Satija, 2019) to normalize gene expression data, and we apply a

CLR transformation to normalize protein data within each cell. We use PCA to reduce the dimensionality of both datasets, taking 30

RNA and 7 protein dimensions to construct the WNN graph.

Human bone marrow mononuclear cells (BMNC) CITE-seq dataset

The BMNC dataset is a CITE-seq dataset from Stuart et al. (2019), consisting of 30,672 cells with a panel of 25 antibodies. We use the

expression matrices as quantified in the original experiment. For gene expression, in order to facilitate comparisons with other

methods, we use standard log-normalization with default parameters in Seurat. We apply a CLR transformation to normalize protein

data within each cell. We use PCA to reduce the dimensionality of both datasets, taking 30 RNA and 18 protein dimensions to
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construct theWNN graph. When performing a targeted re-clustering of T cell populations (Figure S2I), we repeated all preprocessing

steps and performed the same procedure on 14,901 cells identified as T cells.

ASAP-seq dataset of human PBMC

We used the published human PBMC ASAP-seq dataset from Mimitou et al. (2020), containing 4,725 cells with a panel of 227 anti-

bodies. We use the ADT expression matrix, ATAC fragment files, and QC parameters from the original publication. We called peaks

from the ATAC fragment files using the MACS2 callpeak function (Zhang et al., 2008), and kept all peaks with -LOG10(qvalue) > 5 for

the downstream ATAC analysis. We apply TFIDF to normalize ATAC peaks and CLR transformation to normalize protein data within

each cell. We use LSI to reduce the dimensionality of ATAC normalized data, and PCA to reduce the dimensionality of protein. Then,

we used LSI dimensions 2-50 LSI dimensions (excluding the first dimension as this is typically correlated with technical metrics in

ATAC-seq data), and 30 protein PCA dimensions to construct the WNN graph.

10x multiome ATAC+Gene expression dataset of human PBMC

10x Genomics multiomic (RNA + ATAC) data for human PBMCs was obtained from 10X website (https://support.10xgenomics.com/

single-cell-multiome-atac-gex/datasets) and was processed using Signac (Stuart et al., 2020) and Seurat. ATAC-seq peaks were

then identified for each cell type separately using MACS2, using the function CallPeaks in Signac 1.1.0 with arguments group.by =

‘celltype’ and additional.args = ‘–max-gap 50’. Fragment counts for each peak were quantified per cell using the FeatureMatrix func-

tion in Signac. Per-cell quality control metrics were computed using the TSSEnrichment and NucleosomeSignal functions, and cells

retained with a nucleosome signal score < 2, TSS enrichment score > 1, and total RNA counts < 100,000 and > 25,000. We apply

SCTransform to normalize RNA counts and TFIDF to normalize ATAC peaks. We use LSI to reduce the dimensionality of ATAC

data, and PCA to reduce the dimensionality of RNA. Then, we used 2-40 LSI dimensions and 1-40 RNA PCA dimensions to construct

the WNN graph.

SHARE-seq ATAC+Gene expression dataset of mouse skin cells

SHARE-seq data for mouse skin cells was obtained from GEO: GSE140203 (Ma et al., 2020), and was processed using Signac and

Seurat. We used the ATAC-seq peak calls, peak by cell quantifications, and fragment files from the original publication. We applied

SCTransform to normalize RNA counts and TFIDF to normalize ATAC peaks.We used LSI to reduce the dimensionality of ATAC data,

and PCA to reduce the dimensionality of RNA. Then, we used LSI dimensions 2-30 (excluding the first dimension as this is typically

correlatedwith technicalmetrics in ATAC-seq data) and 30RNAPCAdimensions to construct theWNNgraph. Cells are annotated by

their original annotations in the Ma et al. (2020) except for four basal subpopulations which are annotated by WNN-derived clusters.

Motif analyses for the ASAP-seq, 10x RNA+ATAC and SHARE-seq datasets followed the suggested workflow described at https://

satijalab.org/signac/articles/motif_vignette.html

PBMC CITE-seq datasets of HIV Vaccine Trials Network samples

Alignment and expression quantification: We applied standard pipelines to initially align and quantify the CITE-seq datasets newly

generated for this manuscript. For both the 10x v3 (30 scRNaseq) and 10x Immune Profiling Solution (50 scRNA-seq), we used Cell

Ranger 3.1.0 to align reads to the GRCh38 human genome with default settings. To quantify libraries of hashtag oligos (HTO)

from cell hashing, or antibody-derived tags (ADT) from CITE-seq, we used Alevin (Srivastava et al., 2019). A dictionary of barcode

sequences for each antibody clone is included in Table S2.

Quality control and doublet removal: We considered all cells that were detected in our RNA-seq, cell hashing, and ADT libraries.We

first filtered out cells with that were outliers for the number of detected features from these modalities. We removed cells with < 500

detected genes, but also removed cells where we detected an aberrantly high number of features (more than 6,000 genes, more than

50,000 ADT reads, or more than 10,000 ADT reads), particularly to avoid clumps of antibodies that can occasionally attach to cells.

We used our previously described hashing-based doublet detection strategy (Stoeckius et al., 2018), implemented in HTODemux, to

identify doublets that represent two or more cells representing different samples. Inspired by the scrublet package (Wolock et al.,

2019), we implemented a strategy to further remove doublets that may originate within the same sample (and would therefore not

be identified through cell hashing). We first constructed a KNN graph based on the ADT data. For each cell, we examined the per-

centage of neighbors that had been marked by HTODemux as doublets. If this percentage exceeded 20%, we reasoned that the

cell’s molecular profile was similar to a verified doublet, and therefore removed it from further analysis.

Sample integration (10X 30 CITE-seq experiments): To facilitate the identification of shared cell types across datasets, we applied

our previously developed ‘anchor’ workflow (Stuart et al., 2019) to integrate the datasets. We partitioned the dataset into 24 groups,

each corresponding to one of the original samples representing one of eight volunteers, and one of three time points. To integrate the

gene expression values, we first separately normalized each of the 24 groups using SCTransform, and applied the reciprocal PCA

workflow, which is optimized for integration tasks with large numbers of samples and cells. When performing integration, we desig-

nated the unvaccinated cells (day 0), as reference datasets. We integrated the proteinmeasurements across samples using the same

workflow, but after performing normalization within each cell using a CLR transformation.

We reduce the dimensionality of the integrated gene expression and integrated protein datasets via PCA.We use the top 40 and 50

dimensions respectively to construct KNN graphs from the RNA and protein modalities, which is used as input to theWNN procedure

described above.

Clustering and annotation: To cluster our multimodal dataset, we first used the KNN graph based on the weighted RNA and protein

similarities (referred to as the WNN graph), to calculate the Jaccard index (neighborhood overlap) between every pair of cells. This

distance represents the edge weight in a shared nearest neighbor graph (SNN), which we used as input to the graph-based smart
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local moving (SLM) algorithm (Waltman and Van Eck, 2013). We initially clustered cells at a high resolution (resolution = 5), and per-

formed differential expression (see below) on all pairs of clusters for both RNA and protein markers. We merged clusters that did not

exhibit clear evidence of separation, or where the only differentially expressed features represented ribosomal genes or mitochon-

drial genes. In some cases (particularly for extremely rare cell types that required a higher resolution to be correctly annotated in our

clustering), we increased the granularity of our clustering by subsetting cells in an individual cluster, and rerunning SLM on this sub-

graph. In our final annotations, we considered 57 total clusters.

We note that the annotation process requires careful consideration of both knownRNA and proteinmarkers, aswell as those that are

discovered through unsupervised analysis.We placed clusters into eight broad groups (Level 1 annotations: CD4+ T cells, CD8+ T cells,

Unconventional T, B cells, Natural Killer (NK) cells, Monocytes, Dendritic Cells (DC), and Other (consisting of progenitors and additional

rare populations expressing erythroid or platelet lineage markers). We further subdivided these groups into 30 Level 2 annotation cat-

egories representing well-described subtypes of human immune cells: CD4+ T Naive, CD4+ T Central Memory (TCM), CD4+ T Effector

Memory (TEM), CD8+ TEM, etc., all thirty subtypes are listed at https://azimuth.hubmapconsortium.org/). Our 57 clusters fall into sub-

sets of these categories (i.e., CD8+ TCM_1, CD8+ TCM_2, etc.), and represent Level 3 annotations with the highest level of granularity

(all listed in the legend for Figure 3C). We report markers for each of our Level 3 annotations in Figure S4.

Simulated addition of protein noise
In Figure 2C, we perform a robustness analysis to explore the effects of artificially reducing the information content in one data type.

To achieve this, we add increasing amounts of random noise to the protein data, immediately prior to running PCA. The amount of

noise added is generated independently for each element in thematrix, and is drawn from aGaussian distribution withmean zero and

increasing standard deviation (sd = 0.5, 1, 1.5, 2, 3, 4, 5). After adding noise, we repeated the WNN procedure.

Comparing transcriptomic heterogeneity of WNN, RNA, and ADT-derived neighborhoods
In addition, we sought to ensure that the incorporation of protein information in the WNN graph does not come at the expense of

identifying transcriptomically congruent neighborhoods. We therefore examined the WNN-derived neighborhoods for bone marrow

cells originating from clusters with predominantly high protein weights, such as regulatory T cells, and compared them with RNA-

derived neighborhoods. If the WNN procedure is performing well, gene expression levels within these neighborhoods should repre-

sent a ‘homogeneous’ population with low levels of variability. We therefore compared levels of gene variability between RNA-

derived and WNN-derived neighborhoods.

We utilized two different measures to quantify the heterogeneity of gene expression within a local neighborhood (STAR Methods).

Inspired by the M3Drop (Andrews and Hemberg, 2019), we identified ‘variable’ features in a group of cells based on unexpectedly

high ‘dropout’ rates after controlling for a gene’s average expression.We found thatWNN-derived neighborhoodsweremost reflective

of a homogeneous population, as evidenced by the number of genes that exhibited variable levels of expression within each neighbor

set (Figure S2).We obtained similar results when computing ameasure of ‘excess variance’, defined as the amount of residual variance

observed for each gene after controlling for the mean-variance relationship inherent in single-cell data, and also when repeating these

analyses using progenitor subpopulationswith highRNAmodality weights (Figure S2).Moreover, we found that differentially expressed

genes between cell states exhibited nearly identical fold-changes in either WNN-derived or RNA-derived clusters (Figure S2).

Specifically, in Figures S2J–S2M, we test whether the WNN graph generates local neighborhoods that exhibit congruent (or ‘ho-

mogeneous’) levels of gene expression. In particular, we sought to confirm this for subpopulations comprising cells with high protein

modality weights, such as the 297 regulatory T cells in our BMNC dataset. We therefore considered three sets of 5,940 (297 * k = 20)

neighbor cells, defined using either the RNA, ADT, or WNN neighbor graphs, and attempted to identify ‘variable’ genes within these

cells as a test of heterogeneity.

In Figure S2J, we plot the relationship between pseudobulk-level gene expression and ‘dropout’ rate, as inspired by M3Drop (An-

drews and Hemberg, 2019). We fit an average trendline using the ksmooth function from package stats with a Gaussian kernel and

default parameters, and calculate the residual of each gene to the fitted line. We consider genes with a residual > 0.1 to be variable. In

Figure S2L we perform the same analysis, but utilize the standard deviation of gene expression across single cells as an alternative

metric to ‘dropout’ rate for defining variable genes (residual from trendline > 0.5). We repeat the same analysis for HSC (defined by

high RNA modality weights) in Figures S2K and S2M.

Differential analysis for clusters defined by RNA and WNN
In Figures S2N and S2O, we compare the results of differential expression after performing clustering on either the RNA-derived or

WNN-derived nearest neighbor graphs for the BMNC dataset. We first cluster cells by the RNA or WNN nearest neighbor graphs

respectively, and annotate clusters based on their molecular profiles. While some clusters (for example, regulatory T cells) were

only identified in the WNN-derived clusters, we did identify shared populations across both cluster sets including: CD4 Naive T,

CD4 Memory T, CD8 Naive T, B Naive, B Memory, HSC, and LMPP subgroups. For both the WNN-derived and RNA-derived cluster

sets, we performed four transcriptome-based differential expression tests (HSC versus LMPP, CD8 Naive versus CD4 Naive, CD4

Memory versus CD4 Naive, Naive B versus Memory B) using the Wilcoxon test implemented in Seurat. For genes identified as differ-

entially expressed (adjusted p value < 0.01) in either the WNN-derived or RNA-derived cluster sets, we compared the difference in

observed magnitude of log2 fold changes (Figures S2N and S2O).
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Comparisons with MOFA+ and totalVI
In order to assess the performance of our WNN method alongside other recently proposed multimodal integration tools, we

compared the results of WNN, Total Variational Inference (totalVI version 0.6.7) (Gayoso et al., 2019) and Multi-omics factor analysis

v2 (MOFA+ version 1.1) (Argelaguet et al., 2020), on the BMNC dataset. We followed the recommended settings and workflows for

both methods, and further describe parameter choices below.

For totalVI, we use the RNA and ADT counts matrices as input. We use the subsample_genes function to select 4000 variable

genes, and used 500 epochs for model training, as suggested in the totalVI tutorial (https:// scvi-tools.org/en/stable/tutorials/total-

vi.html). All other parameters were set to default settings. We identified nearest neighbors, and performed UMAP visualization on the

learned latent space.

For MOFA+, we used the same normalization method as Seurat to facilitate direct comparison. As recommended in the MOFA+

tutorial (https://raw.githack.com/bioFAM/MOFA2_tutorials/master/R_tutorials/10x_scRNA_scATAC.html), we used the z-scored

data (‘scaled’ data) from the two assays as view1 and view2 for MOFA+. All other parameters were set to default or recommended

settings. We identified nearest neighbors, and performed UMAP visualization based on the learned factors.

The UMAP plots in Figures S2A and S2B show the results of all three methods (we also include independent RNA and protein an-

alyses in Seurat for comparison). The plots show that the methods generally reveal similar sets of cell types, but with important dif-

ferences. For example, regulatory T cells, defined by CD25 expression, are only separated in the WNN UMAP. Figure S2B demon-

strates that this is due to the fact that CD25+ cells only form a distinct cluster in WNN analysis.

In order to move beyond visualization and quantify the performance of each method, we averaged the CD25 expression level for

the calculated multimodal neighbors of each cell, returning a vector of predicted values. We quantified the performance of the

method using the correlation (Pearson; Figure 2D, Spearman; Figure S2), between predicted and measured values. For CD25,

WNN analysis achieved the highest correlation, as cells that are CD25+ are correctly identified as neighbors with other cells that

are CD25+ in the dataset. We repeated this analysis for all protein features, and found that, WNN analysis consistently achieved

the highest correlation. We repeated the analysis for all transcriptomic features as well (Figure S2) and observed similar performance

for all methods. We note that transcriptomic correlations were also much lower, likely due to the substantial technical noise inherent

to scRNA-seq data.

TCR analysis
To generate clonotype information for the 10X 50 samples, TCRab and TCRgd fastq files were processed with cellranger vdj version

3.0.2 against the GRCh38 v2.0.0 reference as provided by 10x Genomics. Clonotype information was then manually added into

Seurat as cell metadata, allowing us to explore the relationship between annotated cell type, molecular state, and TCR sequence.

We obtained productive TCR ⍺/b sequences representing 16,060 distinct clones, where all cells within a clone share the exact

same CDR3⍺ and CDR3b sequences.

Identifying targeted immunophenotype panels
For each of our 57 clusters, we aimed to identify a reduced set of antibodies that could enrich for cells in this molecular state. We

utilized forward feature selection with balanced logistic regression to identify targeted surface protein markers for each cell type.

This represents an iterative process where we successively add markers based on a greedy algorithm aiming to maximize the clas-

sification power of logistic regression. Prior to initializing the procedure, we randomly downsampled cells within abundant cell states

to ensure that no cluster made up more than 5% of all cells in the dataset. We used the implementation for logistic regression with 5-

fold cross validation in the boot R package (Canty and Ripley, 2020). We ran ten rounds of forward selection, allowing us to design

panels of one-ten immunophenotypic markers for each cell type. To enhance the interpretability of these panels, we required the first

five markers selected to be positive markers. These panels are reported in Table S3. We used each panel to enrich for our 57 clusters

‘in silico’, using logistic regression with a decision boundary of 0.5 to set our gates. We report the enrichment, precision, and recall for

each panel in Table S3.

Gradient analysis for NK and B cells
In Figures 5G, 5H, and S5, we identify genes whose expression level is correlated with a cell’s position along a molecular gradient

defined by a single protein. For example, in Figure 5G,we ordered cells along a gradient defined byCD16 protein expression.We then

calculatedMoran’s I, a spatial autocorrelation metric proposed to identify trajectory-dependent genes inMonocle3 (Cao et al., 2019),

to identify correlated genes. We plot a representative subset of these features in Figure 5G.We generate these plots by ordering cells

on the x axis based on their expression level for CD16 protein, and apply the ksmooth function from package stats with default band-

width and parameters (R Development Core Team, 2013) to calculate smoothed gene expression levels across the trajectory. We

utilize the same approach for trajectory analyses based on CD38 and CD27.

Supervised principal component analysis for multimodal data
Due to the inherent levels of noise in single-cell RNA-seq, techniques such as PCA are often used to reduce the dimensionality of the

dataset. PCA identifies correlated modules of genes, whose heterogeneous expression represent the largest sources of variance in

the dataset. PCA is an unsupervised dimensional reduction technique, and while the correlated gene modules may typically
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represent markers of heterogeneous cell states in the dataset, theymay also represent unwanted sources of variation related to tech-

nical noise, cell cycle state, or random fluctuations.

We therefore considered the application of supervised principal component analysis (sPCA) to our multimodal dataset. sPCA is a

generalization of PCA that can be used not only for unsupervised learning, but also for regression and classification problems (Bar-

shan et al., 2011). While PCA will identify the directions that explain maximal variance in the source data, sPCA can help pinpoint

sources of variation that are of the greatest interest. To accomplish this, sPCA takes as input a kernel which describes the similarity

between any two cells based on a response outcome. We set this kernel to represent the Jaccard distances derived from our WNN

graph, as this considers the response outcome to be theweighted combination of RNA and protein profiles. sPCAwill then estimate a

set of principal components that have maximal dependence on the response variable (Barshan et al., 2011). These components

should represent the optimal transcriptomic modules that can be used to separate the cell types defined in our multimodal dataset.

Therefore, the sPCA procedure can identify the set of principal components that can transform the data in a single modality to best

capture the structure in amultimodal dataset.We emphasize that sPCA takes as input a cell-cell similarity kernel, but does not require

cells to be labeled or placed into discrete clusters. Therefore, it can capture both discrete and continuous sources of variation in a

multimodal dataset.

Formally, sPCA transforms the dataset to maximize the dependency with the response variable. We implement the method

described in Barshan et al. (2011), where the Hilbert-Schmidt Independence Criterion (HSIC) is used as the dependency measure.

To apply this method in the context of single cell multimodal data, we define the following:

X: data matrix for gene expression measurements

Y: data matrix for protein measurements.

U: Transformation of X (for example, a set of principal components)

K: Kernel derived from U, describes the cell-cell similarity in X

L: Kernel derived from the WNN graph, and describes the cell-cell similarity based on a weighted combination of X and Y

The HSIC between two kernels K and L is:

HSICðK;LÞ = 1

ðn� 1Þ2 trðKHLHÞ
The goal of the sPCA is to identify U that maximizes HSICðK;LÞ
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As described in described in Barshan et al. (2011), the optimizati
on problem reduces to:
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U
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subject to UTU= I
where H is the centering matrix Hij = I – n-1eeT.
This optimization problem has a closed form solution. U represents the eigenvectors of matrix XHLHXT, based on the top d eigen-

values, where d represents the desired number of components. Each vector in U describes the relative importance for each gene in

defining this component (i.e, U represents a set of feature component loadings).

Mapping query datasets to a multimodal reference
We compute the sPCA transformation described above for our reference dataset, and can subsequently project this transformation

onto any query dataset consisting of PBMC. This enables us to perform supervised analysis of the query datasets. Since our sPCA

was computed based on a reference defined by a large number of cells and antibodies, this transformation will likely be more infor-

mative than an unsupervised PCA computed on a new scRNA-seq query. This transformation should therefore be more capable of

separating cell types in the query dataset. As a secondary benefit, projecting the sPCA transformation onto a query dataset places

the query in the same low-dimensional space as the reference. This provides a starting point to integrate the two datasets, which can

assist in the visualization and annotation of the query as described below.

Reference-based Integration for query datasets
In Stuart et al. (2019), we demonstrate a workflow to identify reference-based transfer ‘anchors’ between reference and query data-

sets. Briefly, this workflow first projects a transformation calculated on the reference dataset onto the query. The method next
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identifies mutual nearest neighbors (Haghverdi et al., 2018) between the reference and query datasets, based on this L2-normalized

low-dimensional space. These anchors can be used to transfer discrete or continuous data from the reference onto the query. For cell

annotation (transfer of discrete label form reference to query), each query cell is assigned a label based on a weighted vote classifier,

where each anchor provides a vote that is weighted by its similarity to the query cell. When classifying cells in this manuscript, we

apply the same workflow, but use the sPCA transformation described above for projection.

In Stuart et al. (2019), we also provide methods to leverage an existing set of anchors in order to modify the underlying gene-

expression levels, allowing shared cell types to cluster together across experiments. We apply a similar workflow here. However,

instead of correcting values in high-dimensional space, we correct in low-dimensional space. This substantially improves the speed

of the method. Moreover, at the conclusion of this procedure, we have placed the query dataset in the same low-dimensional rep-

resentation (defined by the sPCA transformation) as the reference.

Having placed both the query and reference dataset in the same space, we have two options to visualize the query dataset. The first

is that we can project the query data onto the same UMAP projection as has been previously computed. To accomplish this, we use

the umap_transform functionality implemented in the R uwot package, which enables new points to be adding to an existing embed-

ding. We use this approach to project query datasets onto the reference-defined visualization shown in Figure 3D. Together, these

methods enable a fully automated pipeline to leverage a multimodal single-cell reference to annotate and visualize new single-cell

query datasets, even if only the transcriptome was measured. To facilitate users applying this approach to interpret their own data-

sets from either healthy or diseased PBMC, we have provided a web application (https://azimuth.hubmapconsortium.org/) to auto-

mate these analyses.

A second option for visualization is to compute a new (‘de-novo’) UMAP visualization, which can be computed after merging the

reference and query datasets together. For the analysis of the COVID-19 dataset (Wilk et al., 2020), we compute both visualizations.

The reference-based UMAP is shown in Figure 7D, while the de-novo UMAP is shown in Figure S7. One advantage of the de-novo

approach is that it can help to visualize populations in the query that cannot be effectively represented in the reference. For example,

the Wilk et al. (2020) dataset contains subsets of neutrophils, activated granulocytes that were not captured in our reference, as well

as subpopulations of monocytes whose expression profiles are heavily perturbed in COVID-19 samples. In the reference-based visu-

alization, the umap_transform functions aims to embed these cells adjacent to their closest neighbors in the reference, which often

places these cells at the boundary of cell clusters. In the de-novo visualization, all three of these populations remain distinct from

reference cells even after integration (Figure S7). We encourage users to compute both to understand how their dataset can be in-

terpreted in light of a reference, and also to flag any particular populations that may not be well represented.

We leverage this reference-basedmapping workflow to interpret the 50 scRNA-seq datasets generated for this manuscript. We use

the same QC, normalization, and doublet filtration procedures to analyze the 50 data as described earlier in this section. We apply the

reference-based integrative analysis procedures described above to project the 50 scRNA-seq data onto the UMAP visualization

defined by the 30 dataset, and also to transfer a discrete label. The annotation and projected UMAP are shown in Figure S5F, while

the UMAP visualization with annotated clonotype structures is shown in Figure 5K.

Similarly, we applied the same pipeline to map the CITE-seq datasets from (Kotliarov et al., 2020). We downloaded the dataset at

https://doi.org/10.35092/yhjc.c.4753772, applied SCTransform normalization, and repeated the mapping procedure applied above.

While the dataset contains measurements for 82 proteins alongside the transcriptome, we used only the transcriptome for reference

mapping and the transfer of Level 2 annotations. This allowed us to use the withheld protein data for benchmarking with scArches

(version 0.1.2) (Lotfollahi et al., 2020), as shown in Figure S7.

Benchmarking Seurat reference-mapping with scArches
To run scArches, we followed the tutorial released by the authors. We first integrated our 24 30 scRNA-seq samples into a reference

atlas, using the same variable genes as used in the WNN analysis. We obtained poor results with the default nb loss function, and as

suggested in the tutorial, tried the sse loss function as an alternative. We trained the scArches model using recommended parameter

settings of 150 epochs and a batch size of 128, and next mapped query cells onto the reference using recommended parameters in

the tutorial. To facilitate fair comparisons between our reference mapping workflow and scArches, we forced both methods to return

the most likely annotation for each query cell.

We note the extensive challenges in benchmarking reference-based annotation workflows in the absence of ground-truth cell la-

bels. By withholding the protein data from consideration during the mapping process, we can use the protein measurements as an

independent assessment of prediction quality. For 35,619 cells (67.1%), Seurat and scArches returned the same annotation. For the

remaining 17,480 query cells, the two methods returned two divergent annotations (for example, suppose that Seurat annotated the

cell as CD4 Treg, and scArches annotated as NK). In the reference dataset, we calculated the protein centroids for the CD4 Treg and

NK clusters. We then calculated the Pearson correlation between these centroids, and the protein values for the individual cell. If the

cell’s protein levels exhibit a high correlation with the centroid of CD4 Treg, but a low correlation with the centroid of NK, this suggests

that the Treg annotation is correct. This metric and approach are inspired by scmap (Kiselev et al., 2018). Essentially, in cases where

two methods disagree based on an RNA classification, we attempt to classify the cell based on its protein levels to see if there is

strong evidence for one annotation versus another. In 79.4% of cases, we observe stronger support for the Seurat annotation

(Figure S7E).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Differential abundance of cell types across experimental conditions
In Figures 6E and 6F, we analyze the composition of samples at different time points, and aim to find cell states whose abundance

changes during the response. For Level 1 annotations, for each of the 24 samples, we calculated the percentage of each cell state in

each sample, and ran two paired Wilcoxon tests: day 0 versus day 3, and day 0 versus day7. No cell states exhibited significant

changes. To search for more subtle changes, we calculated the relative abundance of all 30 Level 2 annotations in each sample within

each Level 1 group (for example, for each sample we calculated the fraction of CD14+ monocytes within the total pool of sample

monocytes). These values were used as input to two paired Wilcoxon tests: day 0 versus day 3, and day 0 versus day7. We detected

significant shifts (p < 0.05) for three clusters, visualized for the 10X 30 samples in Figure 6F, with independent support for each of the

signals in the 10X 50 datasets (Figure S6).

Identifying differentially expressed genes across cell types and experimental time points
In this manuscript (for example, Figure 4A), we identify differentially expressed (DE) genes and proteins that represent biomarkers of

different cell states, or represent specific responses across experimental conditions. We used the wilcoxauc method from presto

(Korsunsky et al., 2019) to identify DE genes and proteins, reporting markers with adjusted p value < 10�5. For space considerations,

we typically report only the top 20 markers in each heatmap, and sort genes first by adjusted p value and next by log fold-change to

determine the top markers.

Perturbation score
In Figure 6A, we aim to identify the cell types whose molecular state exhibits significant changes during the response to vaccination.

We note that when calculating DE genes and proteins within a cell state, across experimental time points, the statistical power of

these per-gene tests is heavily dependent on the abundance of the cell state. We therefore considered an alternative metric, the

‘perturbation score’ as described in Papalexi et al. (2020), which quantifies the magnitude of the response across the transcriptome.

To briefly summarize, we perform the following procedure to quantify the response for cells at day 3 versus day 0 for each cell state.

We first identify a set of genes that exhibit initial evidence of differential expression across time points, but may not achieve statistical

significance after multiple-testing correction (adjusted p value < 0.1). We compute the pseudobulk expression of these genes after

grouping cells by experimental time point, generating a vector representing the average expression of these genes for day 0 cells, and

a second vector representing the average expression at day 3 cells. We define the ‘perturbation vector’ for this cell state as the dif-

ference between these two vectors, normalized to length 1. Finally, we project the transcriptome of each cell onto this vector and

quantify themagnitude of this projection.We find that this approach helps to prioritize cell types that exhibit robust responses, partic-

ularly when comparing populations with vastly different abundances.

Additional resources
Installation instructions, tutorials, and documentation for Seurat v4 are available at https://www.satijalab.org/seurat.
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Supplemental figures

Figure S1. Weighted nearest neighbor analysis on a CITE-seq dataset of cord blood mononuclear cells, related to Figure 1

(A, B) Independent analysis of transcriptome (A) and protein (B) modalities from a CITE-seq analysis of cord blood mononuclear cells. Panels A-D correspond to

Figures 1A–1D, but the target cell is a dendritic cell instead of a CD8 T cell. Blue dot marks the same target dendritic cell in (A) and (B). Red dots denote the k = 20

nearest neighbors to the target dendritic cell based on the transcriptome (A) or protein (B) modalities. (C) The RNA neighbors are averaged together to predict the

molecular contents of the target dendritic cells. Since the RNA neighbors are all dendritic cells, the predicted values are close to the actual measurements. (D)

Same as in (C), but averaging protein neighbors. Since protein neighbors are a mixture of cell types, there is substantial error between predicted and measured

RNA expression. Thus, the RNA data is more informative for characterizing the state of the target cell, and the cell is assigned an increased RNAmodality weight.

(E) RNA, Protein andWNNUMAP visualization for this dataset. Cells are annotated by theirWNN-assigned labels. Visualizations are the same as in Figure 1, but all

cell types are labeled on the UMAP plots for greater clarity. (F) Feature plot of CD8 protein expression on all three UMAP visualizations, showing that WNN and

ADT analyses help to separate CD4 and CD8 T cells, and also identify additional heterogeneity within NK cells.
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Figure S2. Benchmarking and robustness analysis for WNN integration on a CITE-seq dataset of human bone marrow mononuclear cells

(BMNC), related to Figure 2

(A) UMAP visualizations of the BMNC dataset based on five analytical strategies: independent RNA analysis, independent Protein analysis, WNN, totalVI and

MOFA+. Cell annotations are derived from WNN analysis, which reflect distinct molecular states (see heatmaps in (G-H)). Dashed ovals indicate regions in each

analysis where cell states are intermixed. (B) Expression of protein CD25 and CD57 in these five UMAP visualizations. In WNN analysis, cells that are positive for

these proteins are correctly determined to be neighbors of each other, and therefore separate in UMAP visualization. (C) Robustness analysis for k in the WNN

procedure (k = 20 by default). We varied the number of single-cell RNAmodality weights across different number of k-nearest neighbors used (k = 10, 20, 30, 50)

on the BMNC dataset, and show single-cell violin plots of the resulting RNAmodality weight. We observe only minor fluctuations when varying k within this range.

(D) Benchmarking WNN against totalVI and MOFA+. The integrated latent space defined by WNN most accurately reconstructs expression levels for all 25

proteins. Same as Figure 2D but showing Spearman correlation instead of Pearson correlation. (E) When using the integrated latent space to reconstruct 2000

variable features in the transcriptome, all three methods exhibit equivalent performance. Figure shows boxplot of Pearson correlation between predicted and

measured values for 2,000 features. Benchmarking metrics are described further in STAR Methods. (F) Memory usage for all three methods as a function of the

size of the input dataset. (G) Heatmap of WNN-annotated T cell states. Features include the best RNA and protein features identified by differential expression.

Heatmap displays pseudobulk averages where cells are grouped by cell type, human donor, and technical replicate, and demonstrates that markers are

repeatedly detected across samples and replicates. (H) Same as in (G) but for progenitor cell states. (I) Sub-clustering BMNC T cells based on RNA profiles, ADT

profiles, andWNNanalysis. (J) Gene dropout curve for neighbors of regulatory T cells defined byRNA, ADT, andWNNanalysis. Each point represents a gene, with

the average trendline in black. Genes that deviate from the trendline (STAR Methods) are denoted as ‘variable’ and plotted as red dots. Rightmost panel rep-

resents an upsetR plot examining the set of variable genes identified for each neighborhood set, and shows that WNN-derived neighborhoods exhibit a lower

number of variable genes than RNA-derived neighborhoods. (K) Same as in (J) but for HSC cells. (L) Same as (J) but examining the standard deviation of gene

(legend continued on next page)
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expression as an alternative metric to dropout rate. (M) Same as in (L) but for HSC cells. (N) Absolute log2FC of differentially expressed genes between CD4 Naive

and CD8 Naive clusters, where clusters were defined by either RNA or WNN analysis (STARMethods). (O) Distribution of changes in the magnitude of log2FC for

differentially expressed genes between cell populations based on WNN-based and RNA-based clustering. Distributions are centered at 0, indicating that for all

comparisons, WNN-derived clusters were equally effective at identifying cluster-enriched genes as RNA-derived clusters.
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Figure S3. Applying WNN to additional multimodal technologies, related to Figure 2

(A) Analysis of a publicly available dataset of 11,351 PBMC processed with the 10x Genomics Multiome ATAC+RNA kit. UMAP visualizations of RNA and ATAC-

seq data, as well as integratedWNN analysis. Cells are labeled by their WNN-annotated clusters. (B) Visualization of pseudobulk chromatin accessibility tracks of

the CD8A locus for eight T cell subsets. Multiple peaks clearly separate CD8+ and CD8- T cells, exemplifying the information in ATAC-seq that can enhance

parallel RNA measurements for defining cell states. (C) Enriched motifs within MAIT-specific open chromatin regions. Since multiple transcription factors (i.e.,

RORA, RORB, RORC) have very similar binding motifs, each exhibits strong evidence of enrichment. (D) Density plots, produced by the Nebulosa package,

showing the RNAexpression of RORC, RORAandRORB. (E) Visualization of RORCmotif activity, as calculated by chromVAR,whichmirrors the expression of the

RORC as shown in (D). (F) Analysis of a published ASAP-seq dataset of 4,725 human PBMCwhere chromatin accessibility and surface expression of 227 surface

proteins are simultaneously measured. UMAP visualizations of ATAC and protein data, as well as integrated WNN analysis. Cells are labeled by their WNN-

annotated clusters. (G) Enrichedmotifs within MAIT-specific open chromatin regions in the ASAP-seq dataset are concordant with those identified in ATAC+RNA

analysis. (H) Analysis of a publicly available dataset of 34,774 mouse skin cells from SHARE-seq, which generates paired single-cell profiles of gene expression

and chromatin accessibility. UMAP visualizations of RNA and ATAC-seq profiles, as well as integrated WNN analysis. Cells are labeled by their annotations from

(Ma et al., 2020b). (I) Four basal subpopulations were identified from WNN clustering, and cells from each subpopulation are highlighted in the UMAP

(legend continued on next page)
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visualizations from (H). Basal_4 and Basal_1 do not separate in transcriptomic analysis, but form distinct clusters in ATAC and WNN analysis. (J) Pseudobulk

expression profiles of the Basal_4 and Basal_1 subpopulations demonstrate that the two groups exhibit similar transcriptomic profiles. (K) Top motifs exhibiting

differential accessibility between Basal_4 and Basal_1, as identified by chromVar analysis. (L) chromVar motif activity scores for the p53 and CTCF motifs for all

basal subpopulations. In each case, Basal_4 exhibits elevated accessibility at these motif sites. ***p value < 1e-5 based on Wilcoxon test. (M) Visualization of

pseudobulk chromatin accessibility tracks of the Ctcf. locus for four basal subpopulations. In addition to exhibiting greater accessibility globally at CTCF motif

sites, Basal_4 exhibits increased accessibility at the Ctcf. promoter.
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Figure S4. Identifying targeted gene expression markers and immunophenotype panels, related to Figure 4

(A) RNA expression of two canonical markers of AXL+ SIGLEC6+ dendritic cells (ASDC). Both markers were specifically enriched in the ASDC cells compared to

other DC subsets. (B-C) For each of the 57 clusters, we computed targeted immunophenotype panels using forward selection coupled with logistic regression. In

Figure 4Cwe visualize the level of enrichment for each cluster based on panels of one to tenmarkers. Here, we show precision and recall metrics based on logistic

regression, using a decision boundary of 0.5. These data demonstrate that while we can achieve substantial enrichment with small panels, isolating pure and

homogeneous populations based on small marker panels remains challenging for some clusters. (D-E) Additional heterogeneity in the expression of inflammatory

genes in monocyte populations. Only CD14+ and CD16+ monocytes are shown. Heterogeneous expression of these genes is exhibited in multiple, but not all,

volunteers. This heterogeneity was not related to the vaccination time course, as shown in (E). (F) Heatmap of unconventional T cells states. Features include the

best RNA and protein features identified by differential expression. Heatmap displays pseudobulk averages where cells are grouped by cell type, human

volunteer, and vaccination time point and demonstrates that markers are repeatedly identified across samples. Heatmaps for CD4+ T cell and CD8+ T cell states

are shown in Figures 4A and 4B. (G) Same as in (F) but for myeloid cell states. (H) Same as in (F) but for B cell states. B cell states are subdivided by their mutually

exclusive expression of kappa or lambda light chain, with distinguishing markers including IGKC, IGLC3, IGLC3. (I) Same as in (F) but for other cells states. (J)

Same as in (F) but for NK cells states.
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Figure S5. Additional heterogeneity within lymphoid populations, related to Figure 5

(A) Protein expression of canonical resident lymphocytemarker CD69 in CD8+CD103+, CD8+ CD49a+ T cell populations. Neither population is positive. Platelets

are included as a positive control, as CD69 is constitutively expressed on these cells. (B) Naive, intermediate andmemory B cells are ordered by their quantitative

level of CD27 protein expression. Rolling averages for the expression of genes that correlate positively or negatively with CD27 are shown as smoothed lines. (C-

E) Same as Figure 5J, but after splitting the eight volunteers into five CMV+ (C) and three CMV- (D) samples (Table S3). We observe concordant trends in both

subsets, as well as an independent CITE-seq dataset (Kotliarov et al., 2020). (F) UMAP visualization of CITE-seq dataset of 49,147 PBMC analyzed with the 10X 50

Immune Profiling kit, which also measures immune repertoires. The dataset has been mapped onto the 30-defined multimodal reference, allowing cells to be

visualized in the same UMAP space as the reference, and cells are labeled based on transferred Level 2 annotations. (G) Dot plot showing the overrepresentation

of TCRa sequences within cells annotated as MAIT. As expected, we detect the canonical MAIT TRAV1-2-TRAJ33 as the most abundant sequence along with

reduced usage of TRAJ12 and TRAJ20. We also detect rare populations of invariant NKT cells (defined by the use of TRAV10.TRAJ18). As expected, and in

contrast to the clonotypes reported in Figure 5G, these findings are consistent across volunteers, vaccination time points, and CMV status.
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Figure S6. Cell-type-specific responses to vaccination, related to Figure 6
(A, B) Violin plot showing the upregulation of CD169 protein levels and a module of interferon response genes at day 3. Plot is similar to Figures 6C and 6D, but

restricted to CD14 Monocytes, and shows the individual response of each volunteer. The response is consistent across all volunteers with one exception (P6),

which exhibited signs of a highly activated immune system even prior to vaccination. (C) RNA expression of canonical interferon response gene IFI27 across the

vaccination time course. The expression of IFI27 increases within particular myeloid populations at day 3, but dampens at day 7. (D) Pathway enrichment

(enrichR) of the top DE genes between day 0 and day 3 myeloid cells exhibits a clear enrichment for components of the interferon response. (E) Same as in

Figure 6F, but computed for cells profiled with the 10X 50 kit.
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Figure S7. Reference-based mapping of query datasets, related to Figure 7

(A-E) Benchmarking of Seurat v4 reference-based mapping with scArches. Both methods utilize reference datasets to assist in the interpretation of query data.

(A-B) UMAP visualizations of reference-basedmapping of a human PBMCCITE-seq dataset from Kotliarov et al. (2020). Cells are label by the annotation that was

transferred using each method. The protein data was withheld from mapping and can be used to assess accuracy. (C) For five cell types where we observed a

high rate of discordant predictions between Seurat and scArches, we visualize the protein expression of key markers in the reference dataset (left), Seurat-

transferred annotations (middle), and scArches-transferred annotations (right). In each case, the Seurat annotations provide the most concordant results. For

example, cells annotated by Seurat as Treg express CD25 protein, while cells annotated by scArches as Treg do not. (D) For all 17,480 (32.9%) of query cells

where Seurat and scArches returned different annotations based on the transcriptome, we calculated protein-based classification metrics to determine the

support for each result (STARMethods). In 73.8% of cases, we observe stronger support for the Seurat annotation. (E) Computing time for reference-mapping of

Kotliarov et al. (2020) onto the multimodal reference. (F) The abundance of plamablasts increases during COVID-19 response. p value is computed using an

unpairedWilcoxon test. Annotations were derived from reference-basedmapping, and confirm the result reported inWilk et al. (2020). (G) ‘de novo’ UMAP (STAR

Methods) visualization of the dataset fromWilk et al. (2020) after reference-mapping. Concordant cell types are identified between query and reference data with

three exceptions, denoted with dashed rectangles. (H) Same as in (G), but cells are colored by their unsupervised label as described in Wilk et al. (2020). These

results demonstrate that developing and differentiated neutrophils, which are not present in the reference, remain distinct after reference-based mapping.

Additionally, a population of CD14+Monocytes that has severe transcriptional responses to COVID-19 is also highlighted in this analysis. (I) Gating strategy used

to identify MAIT cells in mass cytometry experiments.
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